Xác định hàm lượng polyphenol dưới dạng tương đương axit rosmarinic trong mẫu trà bằng các điện cực than chì bút chì

Springer Science and Business Media LLC - Tập 53 - Trang 2589-2596 - 2016
Iulia Gabriela David1, Mihaela Buleandră1, Dana Elena Popa1, Ana-Maria Cristina Bîzgan1, Zenovia Moldovan1, Irinel-Adriana Badea1, Emilia Elena Iorgulescu1, Tuğçe Ayça Tekiner2, Huveyda Basaga2
1Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
2Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey

Tóm tắt

Hành vi gần như phục hồi và kiểm soát khuếch tán của axit rosmarinic (RA) trên điện cực than chì dùng một lần (PGE) đã được thiết lập bằng phương pháp voltammetry vòng. Sử dụng đỉnh oxi hóa anod của RA trên PGE, một phương pháp voltammetry xung vi phân (DPV) đã được phát triển để xác định định lượng RA. Phạm vi tuyến tính là 10−8 – 10−5 M RA và giới hạn phát hiện và định lượng lần lượt là 7.93 × 10−9 M và 2.64 × 10−8 M RA. Tính khả thi của phương pháp phát triển đã được kiểm tra thông qua các nghiên cứu phục hồi và đánh giá tổng hàm lượng polyphenolic (TPCDPV) của trà xanh, trà trắng và trà đen Thổ Nhĩ Kỳ, lần lượt có hàm lượng tương đương axit rosmarinic là 40.74, 30.04 và 23.97 mg/g trà khô. Các kết quả này tương đồng tốt với các kết quả thu được từ phương pháp Folin-Ciocalteu. Phương pháp phát triển là một công cụ nhạy cảm và rẻ tiền cho việc đánh giá nhanh và chính xác TPCDPV của các mẫu trà.

Từ khóa

#Axit rosmarinic #Polyphenol #Phương pháp DPV #Điện cực than chì #Trà Thổ Nhĩ Kỳ

Tài liệu tham khảo

Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T (2007) A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ25–35. Behav Brain Res 180:139–145. doi:10.1016/j.bbr.2007.03.001 Astani A, Reichling J, Schnitzler P (2012) Melissa officinalis extract inhibits attachment of Herpes simplex virus in vitro. Chemotherapy 58:70–77. doi:10.1159/000335590 Başkan S, Őztekin N, Erim FB (2007) Determination of carnosic acid and rosmarinic acid in sage by capillary electrophoresis. Food Chem 101:1748–1752. doi:10.1016/j.foodchem.2006.01.033 Brett CMA, Oliveira-Brett AM (1993) Electrochemistry. Principles, methods and applications. Oxford University Press, Oxford Brondani D, Zapp E, Cruz Vieira I, Dupont J, Weber Scheeren C (2011) Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor. Analyst 136:2495–2505. doi:10.1039/C1AN15047B Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217. doi:10.3109/07388551.2011.596804 Buratti S, Scampicchio M, Giovanelli G, Mannino S (2008) A low-cost and low tech electrochemical flow system for the evaluation of total phenolic content and antioxidant power of tea infusions. Talanta 75:312–316. doi:10.1016/j.talanta.2007.11.014 David GI, Badea IA, Radu GL (2013) Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples. Turk J Chem 37:91–100. doi:10.3906/kim-1203-49 David GI, Bizgan AMC, Popa DE, Buleandra M, Moldovan Z, Badea IA, Tekiner TA, Basaga H, Ciucu AA (2015a) Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behavior on a disposable graphite electrode. Food Chem 173:1059–1065. doi:10.1016/j.foodchem.2014.10.139 David GI, Florea MA, Cracea OG, Popa DE, Buleandra M, Iorgulescu EE, David V, Badea IA, Ciucu AA (2015b) Voltammetric determination of B1 and B6 vitamins on a pencil graphite electrode. Chem Pap 69(7):901–910. doi:10.1515/chempap-2015-0096 de Souza GE, Enache TA, Oliveira-Brett AM (2013) Redox behaviour of verbascoside and rosmarinic acid. Comb Chem High T Scr 16:92–97. doi:10.2174/1386207311316020003 Dhaouadi K, Belkhir M, Raboudi F, Mecha E, Ghommeme I, Bronze MDR, Ammar H, Fattouch S (2016) Pomegranate and mint syrup addition to green tea beverage stabilized its polyphenolic content and biofunctional potentials during refrigerated storage. J Food Sci Technol 53(2):1164--1177. doi:10.1007/s13197-015-2109-4 Diaconu M, Litescu SC, Radu GL (2011) Bienzymatic sensor based on the use of redox enzymes and chitosan-MWCNT nanocomposite. Evaluation of total phenolic content in plant extracts. Mikrochim Acta 172:177–184. doi:10.1007/s00604-010-0486-y Dias PM, Changarath J, Damodaran A, Joshi MK (2014) Compositional variation among black tea across geographies and their potential influence on endothelial nitric oxide and antioxidant activity. J Agric Food Chem 62:6655–6668. doi:10.1021/jf501611w Eremia SAV, Vasilescu I, Radoi A, Litescu SC, Radu GL (2013) Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 110:164–170. doi:10.1016/j.talanta.2013.02.029 Furtado MA, de Almeida LC, Furtado RA, Cunha WR, Tavares DC (2008) Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat Res 657:150–154. doi:10.1016/j.mrgentox.2008.09.003 González AG, Herrador MÁ (2007) A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal Chem 26:227–238. doi:10.1016/j.trac.2007.01.009 Hong E, Kim GH (2010) Comparison of extraction conditions for phenolic, flavonoid content and determination of rosmarinic acid from Perilla frutescens var. acuta. Int J Food Sci Tech 45:1353–1359. doi:10.1111/j.1365-2621.2010.02250.x JCGM 100 (2008) Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM), p. 37 Lantano C, Rinaldi M, Cavazza A, Barbanti D, Corradini C (2015) Effects of alternative steeping methods on composition, antioxidant property and colour of green, black and oolong tea infusions. J Food Sci Technol 52:8276–828. doi:10.1007/s13197-015-1971-4 Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28 Lee LS, Kim SH, Kim YB, Kim YC (2014) Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules 19:9173–9186. doi:10.3390/molecules19079173 Litescu SC, Eremia SAV, Bertoli A, Pistelli L, Radu GL (2010) Laccase-nafion based biosensor for the determination of polyphenolic secondary metabolites. Anal Lett 43:1089–1099. doi:10.1080/00032710903518518 Loganayaki N, Siddhuraju P, Manian S (2013) Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J Food Sci Technol 50:687–695. doi:10.1007/s13197-011-0389-x Novak I, Šeruga M, Komorsky-Lovric S (2009) Electrochemical characterization of epigallocatechin gallate using square-wave voltammetry. Electroanal 21:1019–1025. doi:10.1002/elan.200804509 Osakabe N, Yasuda A, Natsume M, Yoshikawa T (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anti-carcinogenetic effects of Perilla frutescens extract in the murine two-stage skin mode. Carcinogenesis 25:549–557. doi:10.1093/carcin/bgh034 Öztürk M, Duru ME, İnce B, Harmandar M, Topçu G (2010) A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts. Food Chem 123:1352–1356. doi:10.1016/j.foodchem.2010.06.021 Pérez-Tortosa V, López-Orenes A, Martínez-Pérez A, Ferrer MA, Calderón AA (2012) Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chem 130:362–369. doi:10.1016/j.foodchem.2011.07.051 Petersens M (2013) Rosmarinic acid: new aspects. Phytochem Rev 12:207–227. doi:10.1007/s11101-013-9282-8 Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302. doi:10.1021/jf0502698 Razboršek MI (2011) Stability studies on trans-rosmarinic acid and GC-MS analysis of its degradation product. J Pharm Biomed Anal 55:1010–1016. doi:10.1016/j.jpba.2011.04.003 Saltas D, Pappas CS, Daferera D, Tarantilis PA, Polissiou MG (2013) Direct determination of rosmarinic acid in Lamiaceae herbs using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and chemometrics. J Agric Food Chem 61:3235–3241. doi:10.1021/jf305520m Shanker N, Debnath S (2015) Impact of dehydration of purslane on retention of bioactive molecules and antioxidant activity. J Food Sci Technol 52:6631–663. doi:10.1007/s13197-015-1741-3 Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299:152–178. doi:10.1016/S0076-6879(99)99017-1 Sonmezdag AS, Kelebek H, Selli S (2016) Characterization of aroma-active and phenolic profilesof wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. J Food Sci Technol. doi:10.1007/s13197-015-2144-1 Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A (2007) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51:3367–3370. doi:10.1128/AAC.00041-07 Wang J, Zhang K, Zhou J, Liu J, Ye B (2013) Electrochemical properties of rosmarinic acid and its analytical application. Sens Lett 11:305–310. doi:10.1166/sl.2013.2718