Voltage-dependent Anion Channel-1 (VDAC-1) Contributes to ATP Release and Cell Volume Regulation in Murine Cells

Journal of General Physiology - Tập 124 Số 5 - Trang 513-526 - 2004
Seiko F. Okada1, Wanda K. O’Neal1, Pingbo Huang1, Robert A. Nicholas2, Lawrence E. Ostrowski1, William J. Craigen3, Eduardo R. Lazarowski1, Richard C. Boucher1
11Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
22Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
33Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030

Tóm tắt

Extracellular ATP regulates several elements of the mucus clearance process important for pulmonary host defense. However, the mechanisms mediating ATP release onto airway surfaces remain unknown. Mitochondrial voltage-dependent anion channels (mt-VDACs) translocate a variety of metabolites, including ATP and ADP, across the mitochondrial outer membrane, and a plasmalemmal splice variant (pl-VDAC-1) has been proposed to mediate ATP translocation across the plasma membrane. We tested the involvement of VDAC-1 in ATP release in a series of studies in murine cells. First, the full-length coding sequence was cloned from a mouse airway epithelial cell line (MTE7b−) and transfected into NIH 3T3 cells, and pl-VDAC-1-transfected cells exhibited higher rates of ATP release in response to medium change compared with mock-transfected cells. Second, ATP release was compared in cells isolated from VDAC-1 knockout [VDAC-1 (−/−)] and wild-type (WT) mice. Fibroblasts from VDAC-1 (−/−) mice released less ATP than WT mice in response to a medium change. Well-differentiated cultures from nasal and tracheal epithelia of VDAC-1 (−/−) mice exhibited less ATP release in response to luminal hypotonic challenge than WT mice. Confocal microscopy studies revealed that cell volume acutely increased in airway epithelia from both VDAC-1 (−/−) and WT mice after luminal hypotonic challenge, but VDAC-1 (−/−) cells exhibited a slower regulatory volume decrease (RVD) than WT cells. Addition of ATP or apyrase to the luminal surface of VDAC-1 (−/−) or WT cultures with hypotonic challenge produced similar initial cell height responses and RVD kinetics in both cell types, suggesting that involvement of VDAC-1 in RVD is through ATP release. Taken together, these studies suggest that VDAC-1, directly or indirectly, contributes to ATP release from murine cells. However, the observation that VDAC-1 knockout cells released a significant amount of ATP suggests that other molecules also play a role in this function.

Từ khóa


Tài liệu tham khảo

2001, J. Biol. Chem., 276, 1954, 10.1074/jbc.M006587200

2003, J. Biol. Chem., 278, 33284, 10.1074/jbc.M302814200

2004, J. Biol. Chem., 279, 4811, 10.1074/jbc.M311020200

1999, J. Biol. Chem., 274, 29607, 10.1074/jbc.274.42.29607

2003, Proc. Natl. Acad. Sci. USA., 100, 4322, 10.1073/pnas.0736323100

2001, J. Cardiovasc. Pharmacol., 38, 900, 10.1097/00005344-200112000-00012

2001, J. Biol. Chem., 276, 6621, 10.1074/jbc.M005893200

2000, Proc. Natl. Acad. Sci. USA., 97, 3201, 10.1073/pnas.97.7.3201

1997, Neuropharmacology., 36, 1127, 10.1016/S0028-3908(97)00125-1

1998, Am. J. Physiol., 275, C619, 10.1152/ajpcell.1998.275.2.C619

2003, Science., 301, 513, 10.1126/science.1083995

1992, Am. J. Physiol., 263, C348, 10.1152/ajpcell.1992.263.2.C348

1997, Am. J. Physiol., 272, L1084

1992, Science., 257, 1125, 10.1126/science.257.5073.1125

1992, Biol. Chem. Hoppe Seyler., 373, 891, 10.1515/bchm3.1992.373.2.891

1998, J. Neurosci., 18, 8794, 10.1523/JNEUROSCI.18-21-08794.1998

2003, J. Neurophysiol., 89, 1870, 10.1152/jn.00510.2002

1992, Am. J. Physiol., 262, C1313, 10.1152/ajpcell.1992.262.5.C1313

1994, Proc. Natl. Acad. Sci. USA., 91, 499, 10.1073/pnas.91.2.499

2000, Jpn. J. Physiol., 50, 235, 10.2170/jjphysiol.50.235

1993, Am. J. Physiol., 265, C577, 10.1152/ajpcell.1993.265.3.C577

1998, J. Biol. Chem., 273, 14906, 10.1074/jbc.273.24.14906

2004, Am. J. Physiol. Gastrointest. Liver Physiol., 286, G538, 10.1152/ajpgi.00355.2003

1995, Am. J. Physiol., 268, L1021

2003, J. Biol. Chem., 278, 27312, 10.1074/jbc.M303172200

1997, Am. J. Physiol., 272, C1058, 10.1152/ajpcell.1997.272.3.C1058

1998, Int. J. Biochem. Cell Biol., 30, 379, 10.1016/S1357-2725(97)00137-4

1999, J. Gen. Physiol., 114, 525, 10.1085/jgp.114.4.525

2004, J. Biol. Chem., 279, 17681, 10.1074/jbc.M304506200

2002, J. Gen. Physiol., 119, 511, 10.1085/jgp.20028540

2000, J. Cell Biol., 150, 1349, 10.1083/jcb.150.6.1349

1999, J. Biol. Chem., 274, 26454, 10.1074/jbc.274.37.26454

2001, Proc. Natl. Acad. Sci. USA., 98, 14120, 10.1073/pnas.241318498

1996, Am. J. Physiol., 270, C1611, 10.1152/ajpcell.1996.270.6.C1611

1995, FEBS Lett., 368, 5, 10.1016/0014-5793(95)00465-L

1997, J. Biol. Chem., 272, 4978, 10.1074/jbc.272.8.4978

2002, Am. J. Physiol. Renal Physiol., 282, F281, 10.1152/ajprenal.00293.2000

2004, J. Biol. Chem., 279, 36855, 10.1074/jbc.M405367200

1993, Am. J. Respir. Cell Mol. Biol., 9, 315, 10.1165/ajrcmb/9.3.315

1990, Am. J. Physiol., 258, F273

1984, Biochim. Biophys. Acta., 770, 93, 10.1016/0005-2736(84)90077-4

2000, Am. J. Respir. Cell Mol. Biol., 23, 755, 10.1165/ajrcmb.23.6.4207

1993, Am. J. Physiol., 264, F490

2000, J. Clin. Invest., 105, 1419, 10.1172/JCI4546

1993, J. Membr. Biol., 133, 253

2001, J. Physiol., 532, 3, 10.1111/j.1469-7793.2001.0003g.x

1992, Hum. Gene Ther., 3, 253, 10.1089/hum.1992.3.3-253

2003, Mol. Ther., 8, 637, 10.1016/S1525-0016(03)00221-1

2003, J. Biol. Chem., 278, 13468, 10.1074/jbc.M300569200

1998, Pharmacol. Rev., 50, 413

1994, J. Biol. Chem., 269, 20584, 10.1016/S0021-9258(17)32033-1

2001, J. Membr. Biol., 183, 165, 10.1007/s00232-001-0064-7

1997, J. Biol. Chem., 272, 21970, 10.1074/jbc.272.35.21970

1996, J. Biol. Chem., 271, 28006, 10.1074/jbc.271.45.28006

2001, J. Gen. Physiol., 118, 251, 10.1085/jgp.118.3.251

2001, J. Biol. Chem., 276, 39206, 10.1074/jbc.M104724200

1997, J. Biol. Chem., 272, 18966, 10.1074/jbc.272.30.18966

2000, Int. J. Biochem. Cell Biol., 32, 1075, 10.1016/S1357-2725(00)00047-9

1995, Cell., 81, 1063, 10.1016/S0092-8674(05)80011-X

1994, J. Biol. Chem., 269, 7081, 10.1016/S0021-9258(17)37249-6

2002, Am. J. Physiol. Cell Physiol., 282, C289, 10.1152/ajpcell.01387.2000

2000, Am. J. Physiol. Cell Physiol., 279, C1578, 10.1152/ajpcell.2000.279.5.C1578

2003, J. Biol. Chem., 278, 40020, 10.1074/jbc.M307603200

1996, Proc. Natl. Acad. Sci. USA., 93, 12020, 10.1073/pnas.93.21.12020

1996, J. Biol. Chem., 271, 18107, 10.1074/jbc.271.30.18107

1998, J. Biol. Chem., 273, 14053, 10.1074/jbc.273.22.14053

2002, J. Biol. Chem., 277, 18891, 10.1074/jbc.M201649200

1994, J. Clin. Invest., 94, 779, 10.1172/JCI117397

2002, Am. J. Physiol. Lung Cell. Mol. Physiol., 283, L1315, 10.1152/ajplung.00169.2002

1996, J. Bioenerg. Biomembr., 28, 93, 10.1007/BF02110638

1995, J. Biol. Chem., 270, 13998, 10.1074/jbc.270.23.13998