Visceral fat mass determination in rodent: validation of dual-energy x-ray absorptiometry and anthropometric techniques in fat and lean rats
Tóm tắt
Because abdominal obesity is predisposed to various metabolic disorders, it is of major importance to assess and track the changes with time of this specific fat mass. The main issue for clinicians or researchers is to use techniques for assessing abdominal fat deposition and its accumulation or changes over time, without sacrificing of experimental subjects. In the rat, techniques to investigate in-vivo visceral fat mass are lacking. The purpose of the study was to validate indirect Dual-energy X-ray Absorptiometry technique and abdominal circumference measurement as tools to predict visceral adipose tissue in rats. Forty-three Wistar male rats from different body weight, fat mass and ages were included in the study. Visceral fat mass was assessed by weighing the total perirenal and peri-epididymal adipose tissues after dissection. Statistical methods were used to discriminate the best region of interest allowing the in-vivo measure of Central Fat Mass by DXA. Abdominal circumference was measured at the same time as the DXA scan. A region of interest including Central Fat Mass from the whole body DXA scan (extending from L2 to L5 vertebrae), correlated strongly with ex-vivo Fat Mass (r = 0.94, p < 0.001). Abdominal circumference correlated significantly with ex-vivo Fat Mass (r = 0.82, p < 0.001) and Central Fat Mass (0.90, p < 0.001) in the whole group of rats. When dividing the whole group into lean and fat rats, correlations remained significant between Central Fat Mass and ex-vivo Fat Mass but disappeared for the lean group between abdominal circumference and ex-vivo Fat Mass. This study validates the Central Fat Mass determined by DXA as a non-sacrificial technique to assess visceral fat for in-vivo investigations in rats. The abdominal circumference measure appears useful in studying overweight or obese rats. These two techniques could be convenient tools in follow-up and longitudinal studies.
Tài liệu tham khảo
Bruce KD, Byrne CD: The metabolic syndrome: common origins of a multifactorial disorder. Postgrad Med J. 2009, 85 (1009): 614-621. 10.1136/pgmj.2008.078014
Seidell JC, Hautvast JG, Deurenberg P: Overweight: fat distribution and health risks. Epidemiological observations. A review. Infusionstherapie. 1989, 16 (6): 276-281.
Oliveira A, Rodriguez-Artalejo F, Severo M, Lopes C: Indices of central and peripheral body fat: association with non-fatal acute myocardial infarction. Int J Obes (Lond). 2010, 34 (4): 733-41. 10.1038/ijo.2009.281
Han TS, van Leer EM, Seidell JC, Lean ME: Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ. 1995, 311 (7017): 1401-1405.
Roopakala MS, Suresh A, Ashtalakshmi , Srinath , Ashok , Giridhar , Anand , Silvia WD: Anthropometric measurements as predictors of intraabdominal fat thickness. Indian J Physiol Pharmacol. 2009, 53 (3): 259-264.
van der Kooy K, Leenen R, Deurenberg P, Seidell JC, Westerterp KR, Hautvast JG: Changes in fat-free mass in obese subjects after weight loss: a comparison of body composition measures. Int J Obes Relat Metab Disord. 1992, 16 (9): 675-683.
Ishikawa M, Koga K: Measurement of abdominal fat by magnetic resonance imaging of OLETF rats, an animal model of NIDDM. Magn Reson Imaging. 1998, 16 (1): 45-53. 10.1016/S0730-725X(97)00221-X
Lee HJ, Choi SS, Park MK, An YJ, Seo SY, Kim MC, Hong SH, Hwang TH, Kang DY, Garber AJ: Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats. Biochem Biophys Res Commun. 2002, 296 (2): 293-299. 10.1016/S0006-291X(02)00822-7
Leung FW, Murray S, Murray E, Go VL: Determination of body fat distribution by dual-energy X-ray absorptiometry and attenuation of visceral fat vasoconstriction by enalapril. Dig Dis Sci. 2008, 53 (4): 1084-1087. 10.1007/s10620-007-9972-4
Morel OE, Aubert R, Richalet JP, Chapelot D: Simulated high altitude selectively decreases protein intake and lean mass gain in rats. Physiol Behav. 2005, 86 (1-2): 145-153. 10.1016/j.physbeh.2005.07.003
Ooyama K, Wu J, Nosaka N, Aoyama T, Kasai M: Combined intervention of medium-chain triacylglycerol diet and exercise reduces body fat mass and enhances energy expenditure in rats. J Nutr Sci Vitaminol (Tokyo). 2008, 54 (2): 136-141. 10.3177/jnsv.54.136
Lac G, Cavalie H, Ebal E, Michaux O: Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density. Lipids Health Dis. 2008, 7: 16- 10.1186/1476-511X-7-16
Johnson DH, Flask CA, Ernsberger PR, Wong WC, Wilson DL: Reproducible MRI measurement of adipose tissue volumes in genetic and dietary rodent obesity models. J Magn Reson Imaging. 2008, 28 (4): 915-927. 10.1002/jmri.21481
Bertin E, Ruiz JC, Mourot J, Peiniau P, Portha B: Evaluation of dual-energy X-Ray absorptiometry for body-composition assessment in rats. J Nutr. 1998, 128 (9): 1550-1554.
Albanese CV, Diessel E, Genant HK: Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003, 6 (2): 75-85. 10.1385/JCD:6:2:75
Stevenson KT, van Tets IG: Dual-energy X-ray absorptiometry (DXA) can accurately and nondestructively measure the body composition of small, free-living rodents. Physiol Biochem Zool. 2008, 81 (3): 373-382. 10.1086/587096
Hill AM, LaForgia J, Coates AM, Buckley JD, Howe PR: Estimating abdominal adipose tissue with DXA and anthropometry. Obesity (Silver Spring). 2007, 15 (2): 504-510. 10.1038/oby.2007.629
Kamel EG, McNeill G, Van Wijk MC: Usefulness of anthropometry and DXA in predicting intra-abdominal fat in obese men and women. Obes Res. 2000, 8 (1): 36-42. 10.1038/oby.2000.6
Glickman SG, Marn CS, Supiano MA, Dengel DR: Validity and reliability of dual-energy X-ray absorptiometry for the assessment of abdominal adiposity. J Appl Physiol. 2004, 97 (2): 509-514. 10.1152/japplphysiol.01234.2003
Kamel EG, McNeill G, Han TS, Smith FW, Avenell A, Davidson L, Tothill P: Measurement of abdominal fat by magnetic resonance imaging, dual-energy X-ray absorptiometry and anthropometry in non-obese men and women. Int J Obes Relat Metab Disord. 1999, 23 (7): 686-692. 10.1038/sj.ijo.0800904
Treuth MS, Hunter GR, Kekes-Szabo T: Estimating intraabdominal adipose tissue in women by dual-energy X-ray absorptiometry. Am J Clin Nutr. 1995, 62 (3): 527-532.
Jebb SA: Measurement of soft tissue composition by dual energy X-ray absorptiometry. Br J Nutr. 1997, 77 (2): 151-163. 10.1079/BJN19970021