Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles

Microbiology and Molecular Biology Reviews - Tập 74 Số 1 - Trang 81-94 - 2010
Terri N. Ellis1, Meta Kuehn1
1Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.

Tóm tắt

SUMMARYOuter membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens.

Từ khóa


Tài liệu tham khảo

10.4049/jimmunol.179.11.7692

10.1139/w03-078

10.1128/iai.59.9.3291-3296.1991

10.1016/j.vaccine.2006.07.047

10.1111/j.1574-6968.2006.00305.x

10.1111/j.1365-2958.2005.04938.x

10.1186/1471-2180-9-26

10.1016/j.micinf.2006.05.001

10.1128/IAI.73.3.1350-1356.2005

10.1074/mcp.M700295-MCP200

10.1128/JB.181.16.4725-4733.1999

10.1177/09680519000060060501

10.1038/nature04596

10.1128/JB.01766-06

10.1371/journal.ppat.1000382

10.1172/JCI115660

10.1586/erv.09.81

10.1099/00221287-49-1-1

10.1016/j.resmic.2003.08.001

10.1093/jac/45.1.9

10.1128/iai.65.7.2904-2913.1997

10.1046/j.1462-5822.2003.00259.x

10.1111/j.1399-302X.1990.tb00217.x

10.1084/jem.138.5.1156

10.1128/jb.171.5.2499-2505.1989

10.1128/jcm.29.6.1162-1170.1991

10.1016/j.micpath.2004.02.004

10.1016/j.vaccine.2009.01.109

10.1128/am.22.6.1152-1158.1971

10.1111/j.1348-0421.2004.tb03626.x

10.1016/S1286-4579(00)01271-5

10.1126/science.286.5444.1561

10.1128/IAI.01382-05

10.1002/(SICI)1096-9896(199906)188:2<220::AID-PATH307>3.0.CO;2-C

10.1128/aem.42.5.886-896.1981

10.1128/IAI.00846-07

Frasch, C. E. 1990. Production and control of Neisseria meningitidis vaccines. Adv. Biotechnol. Processes13:123-145.

10.1128/iai.61.1.155-161.1993

Galdiero, M., A. Folgore, M. Molitierno, and R. Greco. 1999. Porins and lipopolysaccharide (LPS) from Salmonella typhimurium induce leucocyte transmigration through human endothelial cells in vitro. Clin. Exp. Immunol.116:453-461.

10.1128/IAI.01396-07

10.1128/JB.186.16.5506-5512.2004

10.1128/iai.55.3.609-615.1987

10.1128/iai.29.2.704-713.1980

10.1128/iai.65.1.24-34.1997

10.1128/IAI.71.10.5940-5950.2003

10.1128/IAI.66.11.5307-5313.1998

10.1128/iai.60.5.1854-1857.1992

10.1128/iai.55.1.111-117.1987

10.1074/jbc.274.14.9836

10.1016/0003-9969(75)90164-8

10.1016/S1286-4579(00)01322-8

10.1128/IAI.68.5.2566-2572.2000

10.1086/315302

10.1177/09680519010070010101

10.1086/514121

10.1016/0005-2736(76)90058-4

10.1016/j.vaccine.2009.04.071

10.1271/bbb.80580

10.1074/jbc.M308633200

10.1074/jbc.M203740200

10.1074/jbc.275.17.12489

10.1007/PL00006801

10.1111/j.1523-5378.2005.00302.x

10.1046/j.1462-5822.2003.00349.x

10.1128/IAI.00062-06

10.1128/IAI.71.10.5670-5675.2003

10.1128/jb.178.10.2767-2774.1996

10.1128/AAC.42.6.1476

10.1099/13500872-145-8-2051

10.1128/jb.177.14.3998-4008.1995

Kamaguchi, A., K. Nakayama, S. Ichiyama, R. Nakamura, T. Watanabe, M. Ohta, H. Baba, and T. Ohyama. 2003. Effect of Porphyromonas gingivalis vesicles on coaggregation of Staphylococcus aureus to oral microorganisms. Curr. Microbiol.47:485-491.

10.1099/mic.0.25997-0

10.1006/mpat.2001.0474

10.1128/jb.151.3.1523-1531.1982

10.1111/j.1574-6968.2000.tb08905.x

10.1097/00042737-200012120-00002

10.1074/jbc.M307628200

10.1038/sj.emboj.7600471

10.1128/AEM.69.4.2032-2037.2003

Kitchens, R. L., and R. S. Munford. 1998. CD14-dependent internalization of bacterial lipopolysaccharide (LPS) is strongly influenced by LPS aggregation but not by cellular responses to LPS. J. Immunol.160:1920-1928.

10.1128/AEM.65.5.1843-1848.1999

10.1111/j.1348-0421.2001.tb01320.x

10.1128/IAI.74.4.2022-2030.2006

10.1111/j.1574-6968.2009.01669.x

10.1128/IAI.68.12.6917-6923.2000

10.1002/pmic.200700196

10.1002/mas.20175

10.1128/jb.178.9.2479-2488.1996

10.1128/JB.180.20.5478-5483.1998

10.1128/iai.38.3.898-906.1982

10.1128/IAI.00338-07

10.1038/nature03925

10.1046/j.1365-2958.2003.03770.x

10.1139/m89-097

EcoSal—Escherichia coli and Salmonella: cellular and molecular biology 2005

10.1128/JB.00498-06

10.1111/j.1365-2958.2006.05522.x

10.1128/JB.01622-08

10.1016/0005-2736(78)90331-0

10.1172/JCI110684

10.1016/S0140-6736(02)11721-1

10.1111/j.1574-6968.2000.tb09326.x

10.1016/0076-6879(94)35143-0

10.1517/17425240903018863

10.1128/iai.37.1.151-154.1982

10.1128/iai.61.11.4878-4884.1993

10.1016/j.ijmm.2007.03.006

10.1086/498167

10.1006/mpat.1996.0018

10.1111/j.1365-2958.1992.tb01522.x

10.1128/IAI.70.8.4556-4563.2002

10.1128/iai.64.1.146-153.1996

10.1099/mic.0.26841-0

10.1016/j.bbrc.2005.09.035

10.1128/JB.187.7.2286-2296.2005

10.1128/iai.63.10.3973-3979.1995

10.1099/mic.0.26443-0

10.1128/IAI.67.1.113-119.1999

10.1128/IAI.00532-08

10.3109/00365549309008547

10.1128/JB.00257-06

10.1128/JB.00717-08

10.4049/jimmunol.179.4.2477

10.1128/iai.61.9.3892-3900.1993

10.1186/1471-2180-8-87

10.1093/infdis/146.4.568

10.1128/iai.56.4.855-863.1988

10.1086/517611

10.1189/jlb.0109030

10.1128/aem.50.4.1038-1042.1985

10.1128/iai.62.4.1392-1399.1994

10.1016/0923-2508(94)90185-6

10.1016/j.vaccine.2006.09.025

10.1128/IAI.68.5.2410-2417.2000

10.1002/pmic.200500821

10.1046/j.1365-2958.2002.02950.x

10.1016/S0092-8674(03)00754-2

10.1111/j.1348-0421.1995.tb02228.x

10.1016/0005-2736(78)90082-2

10.1111/j.1432-1033.1981.tb05338.x

10.1128/iai.61.4.1460-1467.1993

10.1002/pmic.200700826

Yashroy, R. C. 2007. Mechanism of infection of a human isolate Salmonella (3,10:r:-) in chicken ileum: ultrastructural study. Indian J. Med. Res.126:558-566.

10.1111/j.1574-6968.2000.tb09372.x

10.1111/j.1574-6968.1998.tb13049.x

10.1128/IAI.73.11.7558-7568.2005