Vine Trimming Shoots as Substrate for Ferulic Acid Esterases Production
Tóm tắt
Từ khóa
Tài liệu tham khảo
Devesa-Rey, R., Vecino, X., Varela-Alende, J. L., Barral, M. T., Cruz, J. M., & Moldes, A. B. (2011). Valorization of winery waste vs. the costs of not recycling. Waste Management, 31(11), 2327–2335.
International Organisation of Vine and Wine (OIV). Statistics of world total surface area vineyards in 2012. Available from: http://www.oiv.int/en/databases-and-statistics/statistics . Accessed September 8th, 2016.
Melikoglu, M., Lin, C. S. K., & Webb, C. (2013). Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food and Bioproducts Processing, 91(4), 638–646.
Topakas, E., Vafiadi, C., & Christakopoulos, P. (2007). Microbial production, characterization and applications of feruloyl esterases. Process Biochemistry, 42(4), 497–509.
Benoit, I., Danchin, E. G. J., Bleichrodt, R. J., & de Vries, R. P. (2008). Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnology Letters, 30, 387–396.
Kumar, C. G., Kamle, A., Mongolla, P., & Joseph, J. (2011). Parametric optimization of feruloyl esterase production from Aspergillus terreus strain GA2 isolated from tropical agro-ecosystems cultivating sweet sorghum. Journal of Microbiology and Biotechnology, 21(9), 947–953.
Wong, D. W. S. (2006). Feruloyl esterase: a key enzyme in biomass degradation. Applied Biochemistry and Botechnology, 133, 87–112.
Ou, S., Zhang, J., Wang, Y., & Zhang, N. (2011). Production of feruloyl esterase from Aspergillus niger by solid-state fermentation on different carbon sources. Enzyme research, 2011, 1–4.
Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4(1), 86–93.
Tabka, M. G., Herpoël-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39, 897–902.
Tapin, S., Sigoillot, J. C., Asther, M., & Petit-Conil, M. (2006). Feruloyl esterase utilization for simultaneous processing of nonwood plants into phenolic compounds and pulp fibers. Journal of Agricultural and Food Chemistry, 54(10), 3697–3703.
Koseki, T., Fushinobu, S., Ardiansyah, Shirakawa, H., & Komai, M. (2009). Occurrence, properties, and applications of feruloyl esterases. Applied Microbiology and Biotechnology, 84(5), 803–810. 8.
van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597.
Donaghy, J., Kelly, P. F., & McKay, A. M. (1998). Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Applied Microbiology and Biotechnology, 50(2), 257–260.
Pal, A., & Khanum, F. (2010). Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresource Technology, 101(19), 7563–7569.
Pérez-Rodríguez, N., Oliveira, F., Pérez-Bibbins, B., Belo, I., Torrado Agrasar, A., & Domínguez, J. M. (2014). Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor. Applied Biochemistry and Biotechnology, 173(3), 803–825.
Uraji, M., Kimura, M., Inoue, Y., Kawakami, K., Kumagai, Y., Harazono, K., & Hatanaka, T. (2013). Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Applied Biochemistry and Biotechnology, 171(5), 1085–1093.
Hegde, S., & Muralikrishna, G. (2009). Isolation and partial characterization of alkaline feruloyl esterases from Aspergillus niger CFR 1105 grown on wheat bran. World Journal of Microbiology and Biotechnology, 25(11), 1963–1969.
Koseki, T., Mochizuki, K., Kisara, H., Miyanaga, A., Fushinobu, S., Murayama, T., & Shiono, Y. (2010). Characterization of a chimeric enzyme comprising feruloyl esterase and family 42 carbohydrate-binding module. Applied Microbiology and Biotechnology, 86(1), 155–161.
Uraji, M., Arima, J., Inoue, Y., Harazono, K., & Hatanaka, T. (2014). Application of two newly identified and characterized feruloyl esterases from Streptomyces sp. in the enzymatic production of ferulic acid from agricultural biomass. PloS One, 9(8), e104584.
Zhao, W., Zhong, Y., Yuan, H., Wang, J., Zheng, H., Wang, Y., Cen, X., Xu, F., Bai, J., Han, X., Lu, G., Zhu, Y., Shao, Z., Yan, H., Li, C., Peng, N., Zhang, Z., Zhang, Y., Lin, W., Fan, Y., Qin, Z., Hu, Y., Zhu, B., Wang, S., Ding, X., & Zhao, G. P. (2010). Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Research, 20(10), 1096–1108.
Yoon, L. W., Ang, T. N., Ngoh, G. C., & Chua, A. S. M. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy, 67(July 2015), 319–338.
Topakas, E., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2004). Production of phenolics from corn cobs by coupling enzymic treatment and solid state fermentation. Engineering in Life Sciences, 4(3), 283–286.
Record, E., Asther, M., Sigoillot, C., Pagès, S., Punt, P. J., Delattre, M., et al. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Applied Microbiology and Biotechnology, 62(4), 349–355.
Pérez-Morales, G. G., Ramírez-Coronel, A., Guzmán-López, O., Cruz-Sosa, F., Perraud-Gaime, I., Roussos, S., & Saucedo-Castañeda, G. (2011). Feruloyl esterase activity from coffee pulp in solid-state fermentation. Food Technology and Biotechnology, 49(3), 352–358.
Gawande, P. V., & Kamat, M. Y. (1999). Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. Journal of Applied Microbiology, 87(4), 511–519.
Dhillon, G. S., Kaur, S., Brar, S. K., Gassara, F., & Verma, M. (2012). Improved xylanase production using apple pomace waste by Aspergillus niger in koji fermentation. Engineering in Life Sciences, 12(2), 198–208.
Dhillon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., & Brar, S. K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 34, 1160–1167.
Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technology, 99(16), 7623–7629.
Faulds, C. B., Bartolomé, B., & Williamson, G. (1997). Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Industrial Crops and Products, 6(374), 367.
Piñaga, F., Fernández-Espinar, M. T., Vallés, S., & Ramón, D. (1994). Xylanase production in Aspergillus nidulans: induction and carbon catabolite repression. FEMS Microbiology Letters, 115(2–3), 319–323.
Couto, S. R., & Sanromán, M. Á. (2006). Application of solid-state fermentation to food industry: a review. Journal of Food Engineering, 76, 291–302.
Ito, K., Gomi, K., Kariyama, M., & Miyake, T. (2013). Rapid enzyme production and mycelial growth in solid-state fermentation using the non-airflow box. Journal of Bioscience and Bioengineering, 116(5), 585–590.
Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13–18.
Durand, A. (2003). Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 13(2–3), 113–125.
Díaz, A. B., Alvarado, O., de Ory, I., Caro, I., & Blandino, A. (2013). Valorization of grape pomace and orange peels: improved production of hydrolytic enzymes for the clarification of orange juice. Food and Bioproducts Processing, 91(4), 580–586.
Berovič, M., & Ostroveršnik, H. (1997). Production of Aspergillus niger pectolytic enzymes by solid state bioprocessing of apple pomace. Journal of Biotechnology, 53, 47–53.
Rodríguez-Fernández, D. E., Rodríguez-León, J. A., de Carvalho, J. C., Sturm, W., & Soccol, C. R. (2011). The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. Bioresource Technology, 102(22), 10657–10662.
Topakas, E., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production and partial characterisation of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation. Process Biochemistry, 38(11), 1539–1543.
Panagiotou, G., Granouillet, P., & Olsson, L. (2006). Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Applied Microbiology and Biotechnology, 72(6), 1117–1124.