Vibration of agglomerated CNTRC micro-scale beams carrying a moving concentrated load
Tóm tắt
Từ khóa
#CNTRC #agglomeration #micro-scale beam #vibration #FEMTài liệu tham khảo
<p>[1] D.-L. Shi, X.-Q. Feng, Y. Y. Huang, K.-C. Hwang, and H. Gao. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. <em>Journal of Engineering Materials and Technology</em>, <strong>126</strong>, (2004), pp. 250–257.</p>
<p>[2] M. Heshmati and M. H. Yas. Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach. <em>Journal of Mechanical Science and Technology</em>, <strong>27</strong>, (2013), pp. 3403–3408. </p>
<p>[3] T. T. Tran and D. K. Nguyen. Dynamics of inclined CNTRC sandwich beams under a moving mass with influence of CNT agglomeration. <em>Comptes Rendus. Me´canique</em>, <strong>351</strong>, (2023), pp. 373–390. </p>
<p>[4] L.-L. Ke and Y.-S. Wang. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. <em>Composite Structures</em>, <strong>93</strong>, (2011), pp. 342–350. </p>
<p>[5] R. A. Toupin. Elastic materials with couple-stresses. <em>Archive for Rational Mechanics and Analysis</em>, <strong>11</strong>, (1), (1962), pp. 385–414. </p>
<p>[6] R. D. Mindlin and H. F. Tiersten. Effects of couple-stresses in linear elasticity. <em>Archive for Rational Mechanics and Analysis</em>, <strong>11</strong>, (1), (1962), pp. 415–448.</p>
<p>[7] F. Yang, A. C. M. Chong, D. C. C. Lam, and P. Tong. Couple stress based strain gradient theory for elasticity. <em>International Journal of Solids and Structures</em>, <strong>39</strong>, (2002), pp. 2731–2743.</p>
<p>[8] M. Mohammadimehr, A. A. Monajemi, and H. Afshari. Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams. <em>Microsystem Technologies</em>, <strong>26</strong>, (2017), pp. 3085–3099.</p>
<p>[9] Ö. Civalek, S. Dastjerdi, Ş. D. Akbaş, and B. Akgöz. Vibration analysis of carbon nanotube-reinforced composite microbeams. <em>Mathematical Methods in the Applied Sciences</em>, (2021).</p>
<p>[10] D. M. R. Al-Shewailiah and M. A. Al-Shujairi. Static bending of functionally graded single-walled carbon nanotube conjunction with modified couple stress theory. <em>Materials Today: Pro-ceedings</em>, <strong>61</strong>, (2022), pp. 1023–1037.</p>
<p>[11] I. Esen. Dynamics of size-dependant Timoshenko micro beams subjected to moving loads. <em>International Journal of Mechanical Sciences</em>, <strong>175</strong>, (2020). </p>
<p>[12] H. Daghigh and V. Daghigh. Free vibration of size and temperature-dependent carbon nanotube (CNT)-reinforced composite nanoplates with CNT agglomeration. <em>Polymer Composites</em>, <strong>40</strong>, (2018). </p>
<p>[13] G. Shi. A new simple third-order shear deformation theory of plates. <em>International Journal of Solids and Structures</em>, <strong>44</strong>, (2007), pp. 4399–4417. </p>
<p>[14] M. H. Yas and M. Heshmati. Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. <em>Applied Mathematical Modelling</em>, <strong>36</strong>, (2012), pp. 1371–1394. </p>