Định dạng Vector Boson Fusion và các mô hình đơn giản hóa cho việc tìm kiếm vật chất tối tại các máy va chạm

Santiago Duque-Escobar1, Daniel Ocampo-Henao1, J. D. Ruiz Alvarez1
1Instituto de Física, Universidad de Antioquia, A.A. 1226, Medellín, Colombia

Tóm tắt

Tóm tắtTrong bài báo này, chúng tôi nghiên cứu khả năng tìm kiếm tại các máy va chạm sử dụng định dạng Vector Boson Fusion trong bối cảnh các chữ ký của các Mô hình Đơn giản hóa. Chúng tôi xem xét khả năng vật lý mà những tìm kiếm này có thể đạt được liên quan đến các tìm kiếm kiểu monojet, và xác định sự bổ trợ giữa hai chữ ký này. Chúng tôi xác định các đặc điểm chung của các chữ ký vật chất tối tại LHC nếu các hiện tượng vật lý cơ sở ngụ ý loại sản xuất Vector Boson Fusion.

Từ khóa

#Vector Boson Fusion #vật chất tối #LHC #các mô hình đơn giản hóa

Tài liệu tham khảo

K. Griest, The Search for dark matter: WIMPs and MACHOs, Annals N. Y. Acad. Sci. 688 (1993) 390 [hep-ph/9303253] [INSPIRE].

V.C. Rubin, The rotation of spiral galaxies, Science 220 (1983) 1339.

R. Minchin et al., A Dark hydrogen cloud in the Virgo cluster, Astrophys. J. Lett. 622 (2005) L21 [astro-ph/0502312] [INSPIRE].

V. Zacek, Dark Matter, in 22nd Lake Louise Winter Institute: Fundamental Interactions, Lake Louise, Canada (2007), pg. 170, https://doi.org/10.1142/9789812776105_0007 [arXiv:0707.0472] [INSPIRE].

CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].

CMS collaboration, Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, JHEP 08 (2019) 150 [arXiv:1905.13059] [INSPIRE].

CMS collaboration, Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at $$ \sqrt{\textrm{s}} $$ = 13 TeV, JHEP 03 (2020) 025 [arXiv:1908.01713] [INSPIRE].

ATLAS collaboration, Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Phys. Rev. D 103 (2021) 112006 [arXiv:2102.10874] [INSPIRE].

ATLAS collaboration, Search for dark matter produced in association with a single top quark in $$ \sqrt{s} $$ = 13 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 81 (2021) 860 [arXiv:2011.09308] [INSPIRE].

CMS collaboration, Search for dark matter produced in association with a leptonically decaying Z boson in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Eur. Phys. J. C 81 (2021) 13 [arXiv:2008.04735] [Erratum ibid. 81 (2021) 333] [INSPIRE].

J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].

J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].

C. Csaki, The Minimal supersymmetric standard model (MSSM), Mod. Phys. Lett. A 11 (1996) 599 [hep-ph/9606414] [INSPIRE].

H.E. Haber, The Status of the minimal supersymmetric standard model and beyond, Nucl. Phys. B Proc. Suppl. 62 (1998) 469 [hep-ph/9709450] [INSPIRE].

E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].

A. Goudelis, B. Herrmann and O. Stål, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].

H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209.

C.P. Burgess, Introduction to Effective Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].

M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].

M. Neubert, J. Wang and C. Zhang, Higher-Order QCD Predictions for Dark Matter Production in Mono-Z Searches at the LHC, JHEP 02 (2016) 082 [arXiv:1509.05785] [INSPIRE].

CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].

B. Dutta, G. Palacio, J.D. Ruiz-Alvarez and D. Restrepo, Vector Boson Fusion in the Inert Doublet Model, Phys. Rev. D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE].

J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].

M.R. Buckley, D. Feld and D. Goncalves, Scalar Simplified Models for Dark Matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].

C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

A. Flórez et al., Anapole Dark Matter via Vector Boson Fusion Processes at the LHC, Phys. Rev. D 100 (2019) 016017 [arXiv:1902.01488] [INSPIRE].

CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at $$ \sqrt{s} $$ = 13 TeV, JHEP 07 (2017) 014 [arXiv:1703.01651] [INSPIRE].