Định dạng Vector Boson Fusion và các mô hình đơn giản hóa cho việc tìm kiếm vật chất tối tại các máy va chạm
Tóm tắt
Từ khóa
#Vector Boson Fusion #vật chất tối #LHC #các mô hình đơn giản hóaTài liệu tham khảo
K. Griest, The Search for dark matter: WIMPs and MACHOs, Annals N. Y. Acad. Sci. 688 (1993) 390 [hep-ph/9303253] [INSPIRE].
R. Minchin et al., A Dark hydrogen cloud in the Virgo cluster, Astrophys. J. Lett. 622 (2005) L21 [astro-ph/0502312] [INSPIRE].
V. Zacek, Dark Matter, in 22nd Lake Louise Winter Institute: Fundamental Interactions, Lake Louise, Canada (2007), pg. 170, https://doi.org/10.1142/9789812776105_0007 [arXiv:0707.0472] [INSPIRE].
CMS collaboration, Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. D 97 (2018) 092005 [arXiv:1712.02345] [INSPIRE].
CMS collaboration, Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, JHEP 08 (2019) 150 [arXiv:1905.13059] [INSPIRE].
CMS collaboration, Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at $$ \sqrt{\textrm{s}} $$ = 13 TeV, JHEP 03 (2020) 025 [arXiv:1908.01713] [INSPIRE].
ATLAS collaboration, Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Phys. Rev. D 103 (2021) 112006 [arXiv:2102.10874] [INSPIRE].
ATLAS collaboration, Search for dark matter produced in association with a single top quark in $$ \sqrt{s} $$ = 13 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 81 (2021) 860 [arXiv:2011.09308] [INSPIRE].
CMS collaboration, Search for dark matter produced in association with a leptonically decaying Z boson in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Eur. Phys. J. C 81 (2021) 13 [arXiv:2008.04735] [Erratum ibid. 81 (2021) 333] [INSPIRE].
J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].
J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
C. Csaki, The Minimal supersymmetric standard model (MSSM), Mod. Phys. Lett. A 11 (1996) 599 [hep-ph/9606414] [INSPIRE].
H.E. Haber, The Status of the minimal supersymmetric standard model and beyond, Nucl. Phys. B Proc. Suppl. 62 (1998) 469 [hep-ph/9709450] [INSPIRE].
E.M. Dolle and S. Su, The Inert Dark Matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].
A. Goudelis, B. Herrmann and O. Stål, Dark matter in the Inert Doublet Model after the discovery of a Higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].
C.P. Burgess, Introduction to Effective Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].
M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].
M. Neubert, J. Wang and C. Zhang, Higher-Order QCD Predictions for Dark Matter Production in Mono-Z Searches at the LHC, JHEP 02 (2016) 082 [arXiv:1509.05785] [INSPIRE].
CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].
B. Dutta, G. Palacio, J.D. Ruiz-Alvarez and D. Restrepo, Vector Boson Fusion in the Inert Doublet Model, Phys. Rev. D 97 (2018) 055045 [arXiv:1709.09796] [INSPIRE].
J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].
M.R. Buckley, D. Feld and D. Goncalves, Scalar Simplified Models for Dark Matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
A. Flórez et al., Anapole Dark Matter via Vector Boson Fusion Processes at the LHC, Phys. Rev. D 100 (2019) 016017 [arXiv:1902.01488] [INSPIRE].
CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at $$ \sqrt{s} $$ = 13 TeV, JHEP 07 (2017) 014 [arXiv:1703.01651] [INSPIRE].