Vascular Development

Mark W. Majesky1,2
1Departments of Pediatrics and Pathology, University of Washington, Seattle.
2From the Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.

Tóm tắt

The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain–containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor–dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.

Từ khóa


Tài liệu tham khảo

10.1126/science.aal2379

10.1161/CIRCRESAHA.113.300506

10.1038/nature17040

10.1126/science.1219179

10.1038/nature13989

10.1182/blood-2009-12-257832

10.1161/ATVBAHA.116.307592

10.1038/s41598-017-06627-9

10.1182/blood-2012-01-153486

10.1038/nm.2060

10.1161/ATVBAHA.116.308464

10.1002/jez.1402510210

10.1161/ATVBAHA.110.221168

10.1097/MOH.0b013e3283523e07

10.1093/cvr/cvx133

10.1161/ATVBAHA.114.304768

10.1161/ATVBAHA.116.307517

10.1161/ATVBAHA.115.306430

10.1161/ATVBAHA.117.309853

10.1161/ATVBAHA.117.309814

10.1161/ATVBAHA.117.309785

10.1073/pnas.1509047112

10.1161/ATVBAHA.115.307032

10.1161/ATVBAHA.116.308792

10.1038/ncomms14361

10.1161/ATVBAHA.116.307610

10.1161/ATVBAHA.114.304997

10.1161/ATVBAHA.116.308120

10.7554/eLife.04645

10.1161/ATVBAHA.117.309571

10.1371/journal.pbio.1002163

10.1242/dev.093351

10.1161/ATVBAHA.116.307739

10.1056/NEJM198705283162204

10.1126/science.3941904

10.1161/ATVBAHA.117.310317

10.2174/157340211799304761

10.1074/jbc.M305332200

10.1161/ATVBAHA.112.300185

10.1038/30522

10.1172/JCI19028

10.1161/CIRCRESAHA.107.153510

10.1161/ATVBAHA.117.309079

10.1161/ATVBAHA.117.309257

10.1161/ATVBAHA.116.308859

10.1161/ATVBAHA.110.221135

10.1152/physrev.00041.2003

10.1002/jcp.25208

10.7555/JBR.29.20140151

10.1161/ATVBAHA.116.307897

10.1091/mbc.02-06-0092

10.1161/ATVBAHA.115.305879

10.1161/ATVBAHA.116.307923

10.1161/ATVBAHA.116.308725

10.1161/ATVBAHA.116.308455

10.1242/jeb.202.23.3305

10.1152/physrev.00041.2008

10.1161/ATVBAHA.117.309578

10.1161/ATVBAHA.116.303229

10.1161/ATVBAHA.114.304936

10.1161/ATVBAHA.116.308929

10.1161/ATVBAHA.116.307132

10.1016/j.matbio.2017.07.004

10.1161/ATVBAHA.117.309696

10.1161/ATVBAHA.114.304412

10.1161/ATVBAHA.114.305150

10.1038/ncb2232

10.1161/ATVBAHA.116.308422

10.1161/ATVBAHA.107.141069

10.1007/s00018-013-1554-3

10.1161/ATVBAHA.117.309774

10.1016/j.ydbio.2005.02.012

10.1002/dvg.22721

10.1161/ATVBAHA.117.309599

10.1016/j.ydbio.2005.08.041

10.1242/dev.020958

10.1161/ATVBAHA.117.309401

10.1016/j.cell.2013.07.020

10.1016/S0092-8674(02)01080-2

10.1161/ATVBAHA.117.309156

10.1016/j.ajpath.2014.05.014

10.1093/ejcts/ezs640

10.1161/ATVBAHA.112.300539

10.1002/jbmr.382

10.1172/JCI19628

10.1161/ATVBAHA.110.221549

10.1161/CIRCRESAHA.115.303299

10.1146/annurev-physiol-030212-183802

10.1161/ATVBAHA.110.221176

10.1161/CIRCRESAHA.116.309322

10.1161/ATVBAHA.115.307116

10.1161/ATVBAHA.116.308367

10.1073/pnas.0711382105

10.1161/ATVBAHA.117.308199

10.1371/journal.pgen.0020119

10.1126/science.aaa2151

10.1172/JCI38308

10.1161/ATVBAHA.117.309863

10.1161/ATVBAHA.117.309859

10.1161/ATVBAHA.117.309852

10.1161/ATVBAHA.116.308335

10.1161/ATVBAHA.116.308502

10.1126/scitranslmed.aaa9712

10.1161/ATVBAHA.114.304989

10.1161/ATVBAHA.113.302068

10.1161/ATVBAHA.114.305218