Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-cellular Levels

Cell Biochemistry and Biophysics - Tập 50 Số 2 - Trang 53-78 - 2008
Jay D. Humphrey1
1Department of Biomedical Engineering, 337 Zachry Engineering Center, Texas A&M University, College Station, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rosen, L. A., Hollis, T. M., & Sharma, M. G. (1974). Alterations in bovine endothelial histidine decarboxylase activity following exposure to shear stress. Experimental and Molecular Pathology, 20, 329–343.

Leung, D. Y. M., Glagov, S., & Mathews, M. B. (1976). Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science, 191, 475–477.

Glagov, S., Vito, R. P., Giddens, D. P., & Zarins, C. K. (1992). Micro-architecture and composition of artery walls: relationship to location, diameter, and the distribution of mechanical stress. Journal of Hypertension, 10, S101–S104.

Malek, A., & Izumo, S. (1992). Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. American Journal of Physiology, 263 (Cellular Physiology, 32), 389–396.

Gibbons, G. H., & Dzau, V. J. (1994). The emerging concept of vascular remodeling. New England Journal of Medicine, 330, 1431–1438.

Davies, P. F. (1995). Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75(3), 519–560.

Pries, A. R., Secomb, T. W., & Gaehtgens, P. (1995). Design principles of vascular beds. Circulation Research, 77, 1017–1023.

Taber, L. A. (1995). Biomechanics of growth, remodeling, and morphogenesis. Applied Mechanics Review, 48, 487–545.

Langille, B. L. (1996). Arterial remodeling: relation to hemodynamics. Canadian Journal of Physiology and Pharmacology, 74, 834–841.

Skalak, T., & Price, R. J. (1996). The role of mechanical stresses in microvascular remodeling. Microcirculation, 3, 143–165.

Lehoux, S., Castier, Y., & Tedgui, A. (2006). Molecular mechanisms of the vascular responses to haemodynamic forces. Journal of Internal Medicine, 259, 381–392.

Jamal, A., Bendeck, M., & Langille, B. L. (1992). Structural changes and recovery of function after arterial injury. Arteriosclerosis Thrombosis, 12, 307–317.

Mulvany, M. J. (1992). Vascular growth in hypertension. Journal of Cardiovascular Pharmacology, 20, S7–S11.

Dzau, V. J., & Horiuchi, M. (1998). Vascular remodeling – the emerging paradigm of programmed cell death (apoptosis). Chest, 114, 91S–99S.

Stenmark, K. R., & Mecham, R. P. (1997). Cellular and molecular mechanisms of pulmonary vascular remodeling. Annual Review of Physiology, 59, 89–144.

Levy, B. I., & Tedgui, A. (1999). Biology of the arterial wall. Dordrecht: Kluwer Academic Publishers.

Ward, M. R., Pasterkamp, G., Yeung, A. C., & Borst, C. (2000). Arterial remodeling. Mechanisms and clinical implications. Circulation, 102, 1186–1191.

Humphrey, J. D. (2002). Cardiovascular solid mechanics: cells, tissues, and organs. New York: Springer-Verlag.

Libby, P. (2003). Vascular biology of atherosclerosis: overview and state of the art. American Journal of Cardiology, 91, 3A–6A.

Resnick, N., Yahav, H., Shay-Salit, A., Shushy, M., Schubert, S., Zilberman, L. C. M., & Wofovitz, E. (2003). Fluid shear stress and the vascular endothelium: for better and for worse. Progress in Biophysics & Molecular Biology, 81, 177–199.

Schaper, W., & Schaper, J. (2004). Arteriogenesis. Amsterdam: Kluwer Academic Press.

Intengan, H. D., & Schiffrin, E. L. (2007). Vascular remodeling in hypertension. Roles of apoptosis, inflammation, and fibrosis. Hypertension, 38, 581–587.

Stehbens, W. E. (1990). Pathology and pathogenesis of intracranial berry aneurysms. Neurological Research, 12, 29–34.

Humphrey, J. D., & Canham, P. B. (2000). Structure, properties, and mechanics of intracranial saccular aneurysms. Journal of Elasticity, 61, 49–81.

Zhang, B., Fugleholm, K., Day, L. B., Ye, S., Weller, R. O., & Day, I. N. M. (2003). Molecular pathogenesis of subarachnoid haemorrhage. International Journal of Biochemistry & Cell Biology, 35, 1341–1360.

Kyriacou, S. K., & Humphrey, J. D. (1996). Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. Journal of Biomechanics, 29, 1015–1022. Erratum, 30, 761, 1997.

Ryan, J. M., & Humphrey, J. D. (1999). Finite element based predictions of preferred material symmetries in saccular aneurysms. Annals of Biomedical Engineering, 27, 641–647.

Peters, D. G., Kassam, A. B., Feingold, E., Heidrich-O’Hare, E., Yonas, H., Ferrell, R. E., & Brufsky, A. (2001). Molecular anatomy of an intracranial aneurysm. Coordinated expression of genes involved in wound healing and tissue remodeling. Stroke, 32, 1036–1042.

Mimata, C., Kitaoka, M., Nagahiro, S., Iyama, K., Hori, H., Yoshioka, H., & Ushio, Y. (1997). Differential distribution and expressions of collagens in the cerebral aneurysmal wall. Acta Neuropathologica, 94, 197–206.

Bruno, G., Todor, R., Lewis, I., & Chyatte, D. (1998). Vascular extracellular matrix remodeling in cerebral aneurysms. Journal of Neurosurgery, 89, 431–440.

Gaetani, P., Tartara, F., Tancioni, F., Rodriguez, R., Baena, Y., Casari, E., Alfano, M., & Grazioli, V. (1997). Deficiency of total collagen content and of deoxypyridinoline in intracranial aneurysm walls. FEBS Letters, 404, 303–306.

Kassam, A. B., Horowitz, M., Chang, Y. F., & Peters, D. (2004). Altered arterial homeostasis and cerebral aneurysms: a molecular epidemiology study. Neurosurgery, 54, 1450–1462.

Canham, P. B., Finlay, H. M., Kiernan, J. A., & Ferguson, G. G. (1999). Layered structure of saccular aneurysms assessed by collagen birefringence. Neurological Research, 21, 618–626.

Baek, S., Rajagopal, K. R., & Humphrey, J. D. (2006). A theoretical model of enlarging intracranial fusiform aneurysms. ASME Journal of Biomechanical Engineering, 128, 142–149.

Mayberg, M. R., Okada, T., & Bark, D. H. (1990). The significance of morphological changes in cerebral arteries after subarachnoid hemorrhage. Journal of Neurosurgery, 72, 626–633.

Dietrich, H. H., & Dacey, R. G. (2000). Molecular keys to the problems of cerebral vasospasm. Neurosurgery, 46, 517–530.

Dumont, A. S., Dumont, R. J., Chow, M. M., Lin, C-L., Calisaneller, T., Ley, K. F., Kassell, N. F., & Lee, K. S. (2003). Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery, 53, 123–135.

Grasso, G. (2004). An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage. Brain Research Developmental Brain Research, 44, 49–63.

Pluta, R. M. (2005). Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacology & Therapeutics, 105, 23–56.

Humphrey, J. D. (2007). Towards a continuum biochemomechanical theory of soft tissue and cellular growth and remodeling. In G. Holzapfel, & R. W. Ogden (Eds.), Biomechanical modelling at the molecular, cellular and tissue levels. Heidelberg: Springer (in press).

Bayer, I. M., Adamson, S. L., & Langille, B. L. (1999). Atrophic remodeling of the artery-cuffed artery. Arteriosclerosis Thrombosis and Vascular Biology, 19, 1499–1505.

Yamaguchi-Okada, M., Nishizawa, S., Koide, M., & Nonaka, Y. (2005). Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. Journal of Applied Physiology, 99, 2045–2052.

Truesdell, C., & Noll, W. (1965). The non-linear field theories of mechanics. In S. Flugge (Ed.), Handbuch der Physik (vol. III/3). Berlin: Springer.

Fung, Y. C. (1993). Biomechanics: mechanical properties of living tissues (2nd edn.). New York: Springer-Verlag.

Mow, V. C., Hochmuth, R. M., Guilak, F., & Trans-Son-Tay, R. (1994). Cell mechanics and cellular engineering. New York: Springer-Verlag.

Holzapfel, G. A., & Odgen, R. W. (2006). Mechanics of biological tissue. Berlin: Springer.

Cowin, S. C., & Doty, S. B. (2007). Tissue mechanics. New York: Springer.

Chuong, C. J., & Fung, Y. C. (1986). On residual stress in arteries. ASME Journal of Biomechanical Engineering, 108, 189–192.

Dobrin, P. B., Canfield, T., & Sinha, S. (1975). Development of longitudinal retraction of carotid arteries in neonatal dogs. Experientia, 31, 1295–1296.

Dobrin, P. B., Schwarcz, T. H., & Mrkvicka, R. (1990). Longitudinal retractive force in pressurized dog and human arteries. Journal of Surgical Research, 48, 116–120.

Vaishnav, R. N., Vossoughi, J., Patel, D. J., Cothran, L. N., Coleman, B. R., & Ison-Franklin, E. L. (1990). Effect of hypertension on elasticity and geometry of aortic tissue from dogs. Journal of Biomechanical Engineering, 112, 70–74.

Dye, W. W., Gleason, R. L., Wilson, E., & Humphrey, J. D. (2007). Biaxial biomechanical behavior of carotid arteries in two knockout models of muscular dystrophy. Journal of Applied Physiology, 103, 664–672.

Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd edn.). New York: McGraw Hill.

Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: John Wiley & Sons.

Landau, L. D., & Lifshitz, E. M. (1986). Theory of elasticity (3rd edn.). Oxford: Pergamon Press.

Wertheim, M. G. (1847). Memoire sur l’eastocote et la cohesion des principaux tissues du corps humain. Annales de Chimie et de Physique, 21, 385–414.

Roy, C. S. (1880). The elastic properties of the arterial wall. Philosophical Transactions of the Royal Society of London, 99, 1–31.

Green, A. E., & Adkins, J. E. (1970). Large elastic deformations. Oxford: Oxford University Press.

Oden, J. T. (1972). Finite elements of nonlinear continua. New York: McGraw-Hill.

Treloar, L. R. G. (1975). The physics of rubber elasticity. Oxford: Oxford University Press.

Mow, V. C., Kuei, S. C., Lai, W. M., & Armstrong, C. G. (1980). Biphasic creep and relaxation of articular cartilage in compression? Theory and experiments. Journal of Biomechanical Engineering, 102, 73–84.

Thoma, R. (1893). Untersuchagen uberdie Histogenese and Histomechanik des Gefassystems. Stuttgart: Enke.

Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Science USA, 12, 207–214.

Zamir, M. (1977). Shear forces and blood vessel radii in the cardiovascular system. Journal of General Physiology, 69, 449–461.

Kamiya, A., Bukhari, R., & Togawa, T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bulletin of Mathematical Biology, 46, 127–137.

Greve, J. M., Les, A. S., Tang, B. T., Draney-Bloomme, M. T., Wilson, N. M., Dalman, R. L., Pelc, N. J., & Taylor, C. A. (2006). Allometric scaling of wall shear stress from mice to humans: quantification using cine phase contrast MRI and computational fluid dynamics. American Journal of Physiology, 291, H1700–H1708.

Langille, B. L., Bendeck, M. P., & Keeley, F. W. (1989). Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. American Journal of Physiology, 256 (Heart and Circulatory Physiology, 25), H931–H939.

Resnick, N., & Gimbrone, M. A. (1995). Hemodynamic forces are complex regulators of endothelial gene expression. FASEB Journal, 9, 874–882.

Driss, A. B., Benessiano, J., Poitevin, P., Levy, B. I., & Michael, J-B. (1997). Arterial expansive remodeling induced by high flow rates. American Journal of Physiology, 272, H851–H858.

Rudic, D. R., Shesely, E. G., Maeda, N., Smithies, O., Segal, S. S., & Sessa, W. C. (1998). Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. Journal of Clinical Investigation, 101, 731–736.

Singh, T. M., Abe, K. Y., Sasaki, T., Zhuang, Y. J., Masuda, H., & Zarins, C. K. (1998). Basic fibroblast growth factor expression precedes flow-induced arterial enlargement. Journal of Surgical Research, 77, 165–173.

Humphrey, J. D., & Delange, S. L. (2004). An introduction to biomechanics: solids and fluids, analysis and design. New York: Springer-Verlag.

Wolinsky, H., & Glagov, S. (1967). A lamellar unit of aortic medial structure and function in mammals. Circulation Research, 20, 99–111.

Wolinsky, H. (1970). Comparison of medial growth of human thoracic and abdominal aortas. Circulation Research, 27, 531–538.

Matsumoto, T., & Hayashi, K. (1994). Mechanical and dimensional adaptation of rat aorta to hypertension. ASME Journal of Biomechanical Engineering, 116, 278–283.

Xu, C., Zarins, C. K., Bassiouny, H. S., Briggs, W. H., Reardon, C., & Glagov, S. (2000). Differential transmural distribution of gene expression for collagen types I and III proximal to aortic coarctation in the rabbit. Journal of Vascular Research, 37, 170–182.

Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R., & Kolettis, G. J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. New England Journal of Medicine, 316, 1371–1375.

Han, H. C., & Fung, Y. C. (1995). Longitudinal strain of canine and porcine aortas. Journal of Biomechanics, 28, 637–641.

Jackson, Z. S., Gotlieb, A. I., & Langille, B. L. (2002). Wall tissue remodeling regulates longitudinal tension in arteries. Circulation Research, 90, 918–925.

Gleason, R. L., Wilson, E., & Humphrey, J. D. (2007). Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extensions. Journal of Biomechanics, 40, 766–776.

Gleason, R. L., & Humphrey, J. D. (2005). Effects of a sustained extension on arterial growth and remodeling: a theoretical study. Journal of Biomechanics, 38, 1255–1261.

Gleason, R. L., Taber, L. A., & Humphrey, J. D. (2004). A 2-D model for flow-induced alterations in the geometry, structure, and properties of carotid arteries. ASME Journal of Biomechanical Engineering, 126, 371–381.

Gleason, R. L., & Humphrey, J. D. (2004). A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. Journal of Vascular Research, 41, 352–363.

Jackson, Z. S., Dajnoweiec, D., Gotlieb, A. I., & Langille, B. L. (2005). Partial off-loading of longitudinal tension induces arterial tortuosity. Arteriosclerosis Thrombosis and Vascular Biology, 25, 957–962.

Elsdale, T., Bard, J. (1972). Collagen strata for studies on cell behavior. Journal of Cell Biology, 54, 626–637.

Bell, E., Ivarsson, B., & Merrill, C. (1979). Production of tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Science USA, 76, 1274–1278.

Harris, A. K., Stopak, D., & Wild, P. (1981). Fibroblast traction as a mechanism for collagen morphogenesis. Nature, 290, 249–251.

Tomasek, J. J., & Hay, E. D. (1984). Analysis of the role of microfilaments in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. Journal of Cell Biology, 99, 536–549.

Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechanoregulation of connective tissue remodeling. Nature Reviews, 3, 349–363.

Grinnell, F. (2003). Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology, 13, 264–269.

Delvoye, P., Wiliquet, P., Leveque, J-J., Nusgens, B. V., & Lapiere, C. M. (1991). Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. Journal of Investigative Dermatology, 97, 898–902.

Brown, R. A., Prajapati, R., McGrouther, D. A., Yannas, I. V., & Eastwood, M. (1998). Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. Journal of Cell Physiology, 175, 323–332.

Martinez-Lemus, L. A., Hill, M. A., Bolz, S. S., Pohl, U., & Meininger, G. A. (2004). Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling. FASEB Journal, 18, 708–710.

Gerthoffer, W. T. (2005). Actin cytoskeletal dynamics in smooth muscle contraction. Candian Journal of Physiology and Pharmacology, 83, 851–856.

Langille, B. L., & Dajnowiec, D. (2005). Cross-linking vasomotor tone and vascular remodeling. A novel function for tissue transglutaminase. Circulation Research, 96, 9–11.

Grinnell, F. (1994). Fibroblasts, myofibroblasts, and wound contraction. Journal of Cell Biology, 124, 401–404.

Ingber, D. E. (1993). Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science, 104, 613–627.

Pourati, J., Maniotis, A., Spiegel, D., Schaffer, J. L., Butler, J. P., Fredberg, J. J., Ingber, D. E., Stamenovic, D., & Wang, N. (1998). Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? American Journal of Physiology, 274, C1283–C1289.

Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E., & Ingber, D. E. (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysical Journal, 90, 3762–3773.

Wang, N., Tolic-Norrelykke I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., & Stamenovic, D. (2002). Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology Cell Physiology, 282, C606–C616.

Mizutani, T., Haga, H., & Kawabata, K. (2004). Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motility and the Cytoskeleton, 59, 242–248.

Costa, K. D., Hucker, W. J., & Yin, F. C. P. (2002). Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motility and the Cytoskeleton, 52, 266–274.

Deguchi, S., Ohashi, T., & Sato, M. (2006). Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. Journal of Biomechanics, 39, 2603–2610.

Deguchi, S., Ohashi, T., & Sato, M. (2005). Intracellular stress transmission through actin stress fiber network in adherent vascular cells. Molecular and Cellular Biomechanics, 2, 205–216.

Ingber, D. E. (1997). Tensegrity: the architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.

Fung, Y. C. (1967). Elasticity of soft tissues in simple elongation. American Journal of Physiology, 213, 1532–1544.

Liu, X., Pollack, G. H. (2002). Mechanics of F-actin characterized with microfabricated cantilevers. Biophysical Journal, 83, 2705–2715.

Romer, L. H., Birukov, K. G., & Garcia, J. G. N. (2006). Focal adhesions: paradigm for signaling nexus. Circulation Research, 98, 606–616.

Saez, A. O., Zhang, W., Wu, Y., Turner, C. E., Tang, D. D., & Gunst, S. J. (2004). Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane. American Journal of Physiology, 286, C433–C447.

Cunningham, J. J., Linderman, J. J., & Mooney, D. J. (2002). Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Annals of Biomedical Engineering, 30, 927–935.

Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., & Geiger, B. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3, 466–473.

Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., & Chen, C. S. (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proceedings of the National Academy of Science USA, 100, 1484–1489.

Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J-J., & Hinz, B. (2006). Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. Journal of Cell Biology, 172, 259–268.

Kolodney, M. S., & Wysolmerski, R. B. (1992). Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. Journal of Cell Biology, 117, 73–82.

Discher, D. E., Janmey, P., & Wang, Y-L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143.

Humphrey, J. D. (2001). Stress, strain, and mechanotransduction in cells. ASME Journal of Biomechanical Engineering, 123, 638–641.

Na, S., Meininger, G. A., & Humphrey, J. D. (2007). A theoretical model for F-actin remodeling in vascular smooth muscle cells subjected to cyclic stretch. Journal of Theoretical Biology, 246, 87–99.

Humphrey, J. D., & Rajagopal, K. R. (2002). A constrained mixture model for growth and remodeling of soft tissues. Mathematical Models & Methods in Applied Sciences, 12, 407–430.

Sasamura, H., Shimizu-Hirota, R., & Saruta, T. (2005). Extracellular matrix remodeling in hypertension. Current Hypertension Review, 1, 51–60.

Carver, W., Nagpal, M. L., Nachtigal, M., Borg, T. K., & Terracio, L. (1991). Collagen expression in mechanically stimulated cardiac fibroblasts. Circulation Research, 69, 116–122.

Li, Q., Muragaki, Y., Hatamura, I., Ueno, H., & Ooshima, A. (1998). Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-β. Journal of Vascular Research, 35, 93–103.

Nimni, M. E. (1992). Collagen in cardiovascular tissue. In G. W. Hastings (Eds.), Cardiovascular biomaterials. New York: Springer-Verlag.

Bishop, J. E. (1998). Regulation of cardiovascular collagen deposition by mechanical forces. Molecular Medicine Today, 69–75.

Rodriguez-Feo, J. A., Sluijter, J. P. G., de Kleijn, D. P. V., & Pasterkamp, G. (2005). Modulation of collagen turnover in cardiovascular disease. Current Pharmaceutical Design, 11, 2501–2514.

Niedermuller, H., Skalicky, M., Hofecker, G., & Kment, A. (1977). Investigations on the kinetics of collagen-metabolism in young and old rats. Experimental Gerontology, 12, 159–168.

Kao, W. W-Y., Berg, R. A., & Prockop, D. J. (1977). Kinetics for the secretion of procollagen by freshly isolated tendon cells. Journal of Biological Chemistry, 252, 8391–8397.

Nissen, R., Cardinale, G. J., & Undenfriend, S. (1978). Increased turnover of arterial collagen in hypertensive rats. Proceedings of the National Academy of Science USA, 75, 451–453.

Strauss, B. H., Robinson, R., Batchelor, W. B., Chisholm, R. J., Ravi, G., Natarajan, M. K., Logan, R. A., Mehta, S. R., Levy, D. E., Ezrin, A. M., & Keeley, F. W. (1996). In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circulation Research, 79, 541–550.

Sluijter, J. P. G., Smeets, M. B., Velema, E., Pasterkamp, G., & de Kleijn, D. P. V. (2004). Increase in collagen turnover but not in collagen fiber content is associated with flow-induced arterial remodeling. Journal of Vascular Research, 41, 546–555.

Meshel, A. S., Wei, Q., Aldelstein, R. S., & Sheetz, M. P. (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biology, 7, 157–164.

Kozel, B. A., Rongish, B. J., Czirok, A., Zach, J., Little, C. D., Davis, E. C., Knutsen, R. H., Wagenseil, J. E., Levy, M. A., & Mecham, R. P. (2006). Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. Journal of Cellular Physiology, 207, 87–96.

Czirok, A., Zach, J., Kozel, B. A., Mecham, R. P., Davis, E. C., & Rongish, B. J. (2006). Elastic fiber macro-assembly is a hierarchial, cell motion-mediated process. Journal of Cellular Physiology, 207, 97–106.

Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fibres. Journal of Cell Science, 115, 2817–2828.

Brooke, B. S., Bayes-Genis, A., & Li, D-Y. (2003). New insights into elastin and vascular disease. Trends in Cardiovascular Medicine, 13, 176–181.

Karnik, S. K., Brooke, B. S., Bayes-Genis, A., Sorensen, L., Wythe, J. D., Schwartz, R. S., Keating, M. T., & Li, D. Y. (2003). A critical role for elastin signaling in vascular morphogenesis and disease. Development, 130, 411–423.

Arribas, S. M., Hinek, A., & Gonzalez, M. C. (2006). Elastic fibres and vascular structure in hypertension. Pharmacology & Therapeutics, 111, 771–791.

Canty, E. G., Lu, Y., Meadows, R. S., Shaw, M. K., Holmes, D. F., & Kadler, K. E. (2004). Coalignment of plasma membrane channels and protrusions (fibropositors) specifies the parallelism of tendon. Journal of Cell Biology, 165, 553–563.

Canty, E. G., & Kadler, K. E. (2005). Procollagen trafficking, processing, and fibrillogenesis. Journal of Cell Science, 118, 1341–1353.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland Science.

Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562–573.

Newby, A. C. (2006). Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovascular Research, 69, 614–624.

Chase, A. J., & Newby, A. C. (2003). Regulation of matrix metalloproteinase (matrixin) genes n blood vessels: a multi-step recruitment model for pathological remodeling. Journal of Vascular Research, 40, 329–343.

Prajapati, R. T., Eastwood, M., & Brown, R. A. (2000). Duration and orientation of mechanical loads determine fibroblast cyto-mechanical activation: monitored by protease release. Wound Repair and Regeneration, 8, 238–246.

Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., Nerem, R. M., & Harrison, D. G. (1995). Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. American Journal of Physiology, 269, C1371–C1378.

Frangos, J. A., McIntire, L. V., & Ives, C. L. (1985). Flow effects on prostacyclin production by cultured human endothelial cells. Science, 227, 1477–1479.

Ward, I. M. (1983). Mechanical properties of solid polymers. New York: John Wiley & Sons.

Holzapfel, G. A. (2000). Nonlinear solid mechanics: a continuum approach for engineers. Chichester: John Wiley & Sons.

Shah, A. D., & Humphrey, J. D. (1999). Finite strain elastodynamics of intracranial saccular aneurysms. Journal of Biomechanics, 32, 593–599.

Baek, S., Gleason, R. L., Rajagopal, K. R., & Humphrey, J. D. (2007). Theory of small on large for computing fluid-solid interactions in arteries. Computer Methods in Applied Mechanics and Engineering, 196, 3070–3078.

Turing, A. M. (1952). The chemical basis of morphogenesis. Proceedings of the Royal Society of London, B237, 37–72.

Murray, J. D. (2002). Mathematical biology. I. An introduction. Berlin: Springer-Verlag.

Skalak, R. (1981). Growth as a finite displacement field. In D. E. Carlson, & R. T. Shield (Eds.), Proc IUTAM symposium on finite elasticity. The Hague: Martinus Nijhoff.

Rodriguez, E. K., Hoger, A., & McCulloch, A. D. (1994). Stress-dependent finite growth in soft elastic tissues. Journal of Biomechanics, 27, 455–467.

Taber, L. A. (1998). A model for aortic growth based on fluid shear and fiber stresses. ASME Journal of Biomechanical Engineering, 120, 348–354.

Rachev, A., Stergiopulos, N., & Meister, J-J. (1996). Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. Journal of Biomechanics, 29, 635–642.

Rachev, A., Stergiopulos, N., Meister, J-J. (1998). A model for geometric and mechanical adaptation of arteries to sustained hypertension. ASME Journal of Biomechanical Engineering, 120, 9–17.

Fridez, P., Rachev, A., Meister, J-J., Hayashi, K., & Stergiopulos, N. (2001). Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. American Journal of Physiology, 280, H2752–H2760.

Bowen, R. M. (1976). Theory of mixtures. In A. C. Eringen (Ed.), Continuum physics (vol. III). New York: Academic Press.

Bernard, S., Pujo-Menjouet, L., & Mackey, M. C. (2003). Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophysical Journal, 84, 3414–3424.

Zhu, C., Bao, G., & Wang, N. (2000). Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering, 2, 189–226.

Stamenovic, D., & Ingber, D. E. (2002). Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 1, 95–108.

Bao, G., & Suresh, S. (2003). Cell and molecular mechanics of biological materials. Nature Materials, 2, 715–725.

Huang, H., Kamm, R. D., & Lee, R. T. (2004). Cell mechanics and mechanotransduction: pathways, probes, and physiology. American Journal of Physiology Cell Physiology, 287, C1–C11.

Heidemann, S. R., & Wirtz, D. (2004). Towards a regional approach to cell mechanics. Trends in Cell Biology, 14, 160–166.

Lim, C. T., Zhou, E. H., & Quek, S. T. (2006). Mechanical models for living cells-a review. Journal of Biomechanics, 39, 195–216.

Wu, H. W., Kuhn, T., & Moy, V. T. (1998). Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning, 20, 389–397.

Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal, 78, 520–535.

Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Krauss, W. E., & Truskey, G. A. (2001). Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics, 34, 1545–1553.

Mijailovich, S. M., Kojic, M., Zivkovic, M., Fabry, B., & Fredberg, J. J. (2002). A finite element model of cell deformation during magnetic bead twisting. American Journal of Physiology, 93, 1429–1436.

Mack, P. J., Kaazempur-Mofrad, M. R., Karcher, H., Lee, R. T., & Kamm, R. D. (2003). Force-induced focal adhesion transduction: effects of force amplitude and frequency. American Journal of Physiology, 287, C954–C962.

Fabry, B., Maksym, G. N., Butler, J. P., Glogauer, M., Navajas, D., & Fredberg, J. J. (2001). Scaling the microrheology of living cells. Physical Review Letters, 87, 148102–148114.

Smith, B. A., Tolloczko, B., Martin, J. G., & Grutter, P. (2005). Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: Stiffening by contractile agonist. Biophysical Journal, 88, 2994–3007.

Desprat, N., Richert, A., Simeon, J., & Asnacios, A. (2005). Creep function of a single living cell. Biophysical Journal, 88, 2224–2233.

Lenormand, G., & Fredberg, J. J. (2006). Deformability, dynamics, and remodeling of cytoskeleton of the adherent living cell. Biorheology, 43, 1–30.

Costa, K. D., & Yin, F. C. P. (1999). Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. ASME Journal of Biomechanical Engineering, 121, 462–471.

Janmey, P. A., Euteneuer, U., Traub, P., & Schliwa, M. (1991). Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. Journal of Cell Biology, 113, 155–160.

Herant, M., Marganski, W. A., & Dembo, M. (2003). The mechanics of neutrophils: synthetic modeling of three experiments. Biophysical Journal, 84, 3389–3413.

Mooney, D. J., Langer, R., & Ingber, D. E. (1995). Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. Journal of Cell Science, 108, 2311–2320.

McGrath, J. L., Tardy, Y., Dewey, D. F., Meister, J. J., & Hartwig, J. H. (1998). Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophysical Journal, 75, 2070–2078.

Worth, F. F., Rolfe, B. E., Song, J., & Campbell, G. R. (2001). Vascular smooth muscle phenotypic modulation in culture is associated with reorganization of contractile and cytoskeletal proteins. Cell Motility and the Cytoskeleton, 49, 130–145.

Davies, P. F., Zilberberg, J., & Helmke, B. P. (2003). Spatial microstimuli in endothelial mechanosignaling. Circulation Research, 92, 359–370.

Huang, H., Sylvan, J., Jonas, M., Barresi, R., So, P. T. C., Campbell, K. P., & Lee, R. T. (2005). Cell stiffness and receptors: evidence for cytoskeletal subnetworks. American Journal of Physiology Cell Physiology, 288, C72–C80.

Langevin, H. M., Cornbrooks, C. J., & Taatjes, D. J. (2004). Fibroblasts form a body-wide cellular network. Histochemistry and Cell Biology, 122, 7–15.

Wilson, E., Mai, Q., Sudhir, K., Weiss, R. H., & Ives, H. E. (1993). Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. Journal of Cell Biology, 123, 741–747.

Swartz, M. A., Tschumperlin, D. J., Kamm, R. D., & Drazen, J. M. (2001). Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proocedings of the National Academy of Science USA, 98, 6180–6185.

Flybjerg, H., Jobs, E., & Leibler, S. (1996). Kinetics of self-assembling microtubules: An “inverse problem” in biochemistry. Proceedings of the National Academy of Science USA, 93, 5975–5979.

Edelstein-Keshet, L. (1998). A mathematical approach to cytoskeletal assembly. European Biophysics Journal, 27, 521–531.

Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., & Janmey, P. A. (2005). Nonlinear elasticity in biological gels. Nature, 435, 191–194.

Gardel, M. L., Shin, J. H., MacKintosh, F. C., Mahadevan, L., Matsudaira, P., & Weitz, D. A. (2004). Elastic behavior of cross-linked and bundled actin networks. Science, 304, 1301–1305.

Wagner, B., Tharmann, R., Haase, I., Fischer, M., & Bausch, A. R. (2006). Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. Proceedings of the National Academy of Science USA, 103, 13974–13978.

Sept, D., & McCammon, J. A. (2001). Thermodynamics and kinetics of actin filament nucleation. Biophysical Journal, 81, 667–674.

VanBuren, V., Cassimeris, L., & Odde, D. J. (2005). Mechanical model of microtubule structure and self-assembly kinetics. Biophysical Journal, 89, 2911–2926.

Galou, M., Gao, J., Humbert, J., Mericskay, M., Li, Z., Paulin, D., & Vicart, P. (1997). The importance of intermediate filaments in the adaptation of tissues to mechanical stress: evidence from gene knockout studies. Biology of the Cell, 89, 85–97.

Westerhoff, H. V., & Paulson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22, 1249–1252.

Skalak, T. C. (2002). In vivo and in silico approaches for analysis and design of multisignal, multicomponent assembly processes in vascular systems. Annals of the New York Academy of Sciences, 961, 223–242.

Humphrey, J. D. (2003). Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London A, 459, 3–46.

Harris, A. K. (1994). Multicellular mechanics in the creation of anatomical structures. In N. Akkas (Ed.), Biomechanics of active movement and division of cells (pp. 87–129). Berlin: Springer.

Fung, Y. C. (2002). Foreword: celebrating the inauguration of the journal: Biomechanics and Modeling in Mechanobiology. Biomechanics and Modeling in Mechanobiology, 1, 3–4.

Baek, S., Wells, P. B., Rajagopal, K. R., & Humphrey, J. D. (2005). Heat-induced changes in the finite strain viscoelastic behavior of a collagenous tissue. ASME Journal of Biomechanical Engineering, 127, 580–586.

Ogden, R. W. (1997). Non-linear elastic deformations. New York: Dover.

Humphrey, J. D. (1999). Remodeling of a collagenous tissue at fixed lengths. ASME Journal of Biomechanical Engineering, 121, 591–597.