Variogram-Based Proper Scoring Rules for Probabilistic Forecasts of Multivariate Quantities*
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, 1996, A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518, 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2
Berrocal, 2007, Combining spatial statistical and ensemble information in probabilistic weather forecasts, Mon. Wea. Rev., 135, 1386, 10.1175/MWR3341.1
Bruno, 1989
Buizza, 2005, A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems, Mon. Wea. Rev., 133, 1076, 10.1175/MWR2905.1
Cressie, 1998, The variance-based cross-variogram: You can add apples and oranges, Math. Geol., 30, 789, 10.1023/A:1021770324434
Dawid, 1999, Coherent dispersion criteria for optimal experimental design, Ann. Stat., 27, 65, 10.1214/aos/1018031101
Emery, 2005, Variograms of order ω: A tool to validate a bivariate distribution model, Math. Geol., 37, 163, 10.1007/s11004-005-1307-4
Feldmann, 2015, Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression, Mon. Wea. Rev., 143, 955, 10.1175/MWR-D-14-00210.1
Fricker, 2013, Three recommendations for evaluating climate predictions, Meteor. Appl., 20, 246, 10.1002/met.1409
Gneiting, 2011, Making and evaluating point forecasts, J. Amer. Stat. Assoc., 106, 746, 10.1198/jasa.2011.r10138
Gneiting, 2007, Strictly proper scoring rules, prediction, and estimation, J. Amer. Stat. Assoc., 102, 359, 10.1198/016214506000001437
Gneiting, 2014, Probabilistic forecasting, Ann. Rev. Stat. Appl., 1, 125, 10.1146/annurev-statistics-062713-085831
Gneiting, 2007, Probabilistic forecasts, calibration and sharpness, J. Roy. Stat. Soc., 69B, 243, 10.1111/j.1467-9868.2007.00587.x
Gneiting, 2008, Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds, TEST, 17, 211, 10.1007/s11749-008-0114-x
Hamill, 1999, Hypothesis tests for evaluating numerical precipitation forecasts, Wea. Forecasting, 14, 155, 10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2
Hamill, 2001, Interpretation of rank histograms for verifying ensemble forecasts, Mon. Wea. Rev., 129, 550, 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
Hamill, 1997, Verification of Eta-RSM short-range ensemble forecasts, Mon. Wea. Rev., 125, 1312, 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
Hamill, 2001, Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Wea. Rev., 129, 2776, 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
Hamill, 2003, Ensemble forecasts and the properties of flow-dependent analysis-error covariance, Mon. Wea. Rev., 131, 1741, 10.1175/2559.1
Hamill, 2013, NOAA’s second-generation global medium-range ensemble reforecast dataset, Bull. Amer. Meteor. Soc., 94, 1553, 10.1175/BAMS-D-12-00014.1
Hersbach, 2000, Decomposition of the continuous ranked probability score for ensemble prediction systems, Wea. Forecasting, 15, 559, 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
Houtekamer, 2001, A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Wea. Rev., 129, 123, 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
Jung, 2008, Scale-dependent verification of ensemble forecasts, Quart. J. Roy. Meteor. Soc., 134, 973, 10.1002/qj.255
Matérn, 1986
Pinson, 2012, Evaluating the quality of scenarios of short-term wind power generation, Appl. Energy, 96, 12, 10.1016/j.apenergy.2011.11.004
Pinson, 2013
Roulston, 2002, Evaluating probabilistic forecasts using information theory, Mon. Wea. Rev., 130, 1653, 10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2
Schefzik, 2013, Uncertainty quantification in complex simulation models using ensemble copula coupling, Stat. Sci., 28, 616, 10.1214/13-STS443
Smith, 2004, Extending the limits of ensemble forecast verification with the minimum spanning tree, Mon. Wea. Rev., 132, 1522, 10.1175/1520-0493(2004)132<1522:ETLOEF>2.0.CO;2
Thorarinsdottir, 2010, Probabilistic forecasts of wind speed: Ensemble model output statistics using heteroskedastic censored regression, J. Roy. Stat. Soc., 173A, 371, 10.1111/j.1467-985X.2009.00616.x
Wilks, 2004, The minimum spanning tree histogram as verification tool for multidimensional ensemble forecasts, Mon. Wea. Rev., 132, 1329, 10.1175/1520-0493(2004)132<1329:TMSTHA>2.0.CO;2
Wilks, 2014, Multivariate ensemble Model Output Statistics using empirical copulas, Quart. J. Roy. Meteor. Soc., 10.1002/qj.2414