Variation in soil carbon, nitrogen and microbial attributes within a silvopastoral system in the Brazilian Cerrado

Luiz Henrique Gomes de Abreu1, Igor Costa de Freitas1, Pedro Henrique Lopes Santana1, Demerson Luiz de Almeida Barbosa1, Leonardo David Tuffi Santos1, Márcia Vitória Santos2, Demerson Arruda Sanglard1, Leidivan Almeida Frazão1
1Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Brazil
2Departamento de Zootecnia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil

Tóm tắt

There is insufficient information about the dynamics of soil organic matter in integrated production systems. Therefore, we aimed to evaluate the variations in soil C and N stocks and microbial attributes as a function of the distances apart from the eucalyptus double rows within a silvopastoral system in the Brazilian Cerrado. Four treatments were considered, consisting of four distances (0.5 m, 1.6 m, 3.8 m and 6 m) apart from the double rows of eucalyptus for soil sampling within the silvopastoral system. The soil C and N contents and stocks, C/N ratio, microbial C (Cmic), soil basal respiration, metabolic quotient and microbial quotient were evaluated. Our results showed that soil C contents and stocks were significantly higher near the eucalyptus trees. Soil C stocks ranged from 99.91 (6.0 m) to 119.64 Mg ha−1 (0.5 m) up to 100 cm soil depth, with an increase of 19.73 Mg ha−1 nearest of the forest component. The same pattern was observed for N stocks, with values ranging from 9.52 (0.5 m) to 7.95 Mg ha−1 (6.0 m) and representing an increase of 1.57 Mg ha−1 near the eucalyptus. We also found an increase of 51.32% in the Cmic at 0.5 m apart from the forest component. Thus, we can infer that the presence of eucalyptus improved the soil quality within the silvopastoral system, indicating that the correct soil sampling and measurements must be performed considering all the transect cultivated with forage grass and double rows of eucalyptus.

Từ khóa


Tài liệu tham khảo

Abbas F, Hammad HM, Fahad S, Cerdà A, Rizwan M, Farhad W, Ehsan S, Bakhat HF (2017) Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environ Sci Pollut Res 24:11177–11191. https://doi.org/10.1007/s11356-017-8687-0

Albuquerque ER, Sampaio EV, Pareyn FG, Araújo EL (2015) Root biomass under stem bases and at different distances from trees. J Arid Environ 116:82–88. https://doi.org/10.1016/j.jaridenv.2015.02.003

Almeida LS, Ferreira VAS, Fernandes LA, Frazão LA, Oliveira ALG, Sampaio RA (2016) Indicadores de qualidade do solo em cultivos irrigados de cana-de-açúcar. Pesq Agropec Bras 51:1539–1547. https://doi.org/10.1590/s0100-204x2016000900053

Anderson TH, Domsch KH (1989) Rations of microbial biomass carbon to total organic in arable soils. Soil Biol Biochem 21:474–479. https://doi.org/10.1016/0038-0717(89)90117-X

Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395. https://doi.org/10.1016/0038-0717(93)90140-7

Araújo FS, Leite LFC, Souza ZM, Torres JLR, Costa ASHB, Ferreira AHC (2017) Fertility and total organic carbon in oxisol under different management systems in Savannah of Piauí, Brazil. Trop Subtrop Agroecosyst 20:165–172

Azar GS, Araújo ASF, Oliveira ME, Azevêdo DMMR (2013) Soil microbial biomass and activity under pasture monoculture and silvopastoral systems. Semina Ciênc Agrár 34:2727–2736. https://doi.org/10.5433/1679-0359.2013v34n6p2727

Beuschel R, Piepho HP, Joergensen RG, Wachendorf C (2019) Similar spatial patterns of soil quality indicators in three poplar-based silvo-arable alley cropping systems in Germany. Biol Fertil Soils 55:1–14. https://doi.org/10.1007/s00374-018-1324-3

Borges WLB, Calonego JC, Rosolen CA (2019) Impact of crop-livestock-forest integration on soil quality. Agrofor Syst 93:2111–2119. https://doi.org/10.1007/s10457-018-0329-0

Cabral Filho FR, Cunha FN, Silva NF, Teixeira MB, Santos LNS, Vieira GS (2017) Water infiltration rate in distroferric red latosol under different cropping systems. Rev Bras Agric Irrig 11:1371–1381. https://doi.org/10.7127/rbai.v11n300555

Cardinael R, Chevallier T, Barthès BG, Saby NP, Parent T, Dupraz C, Bernoux M, Chenu C (2015) Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon—a case study in a Mediterranean context. Geoderma 259:288–299. https://doi.org/10.1016/j.geoderma.2015.06.015

Cezar RM, Vezzani FM, Schwiderke DK, Gaiad S, Brown GG, Seoane CES, Froufe LCM (2015) Soil biological properties in multistrata successional agroforestry systems and in natural regeneration. Agrofor Syst 89:1035–1047. https://doi.org/10.1007/s10457-015-9833-7

Chen C, Liu W, Jiang X, Wu J (2017) Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: implications for land use. Geoderma 299:13–24. https://doi.org/10.1016/j.geoderma.2017.03.021

Dhillon GS, Van Rees KC (2017) Soil organic carbon sequestration by shelterbelt agroforestry systems in Saskatchewan. Can J Soil Sci 97:394–409. https://doi.org/10.1139/cjss-2016-0094

Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos (1997) Manual de métodos de análise de solo. Embrapa, Brasília

Franzluebbers AJ, Chappell JC, Shi W, Cubbage FW (2017) Greenhouse gas emissions in an agroforestry system of the southeastern USA. Nutr Cycl Agroecosyst 108:85–100. https://doi.org/10.1007/s10705-016-9809-7

Freitas IC, Ribeiro JM, Araujo NCA, Santos MV, Sampaio RA, Fernandes LA, Azevedo AM, Feigl BJ, Cerri CE, Frazão LA (2020) Agrosilvopastoral systems and well-managed pastures increase soil carbon stocks in the Brazilian Cerrado. Rangel Ecol Manag. https://doi.org/10.1016/j.rama.2020.08.001

Gelaw AM, Singh BR, Lal R (2014) Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agric Ecosyst Environ 188:256–263. https://doi.org/10.1016/j.agee.2014.02.035

Guillot E, Hinsinger P, Dufour L, Roy J, Bertrand I (2019) With or without trees: resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biol Biochem 129:122–135. https://doi.org/10.1016/j.soilbio.2018.11.011

Instituto Nacional de Meteorologia (2016) BDMEP: banco de dados meteorológicos para ensino e pesquisa. http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Acessado em 20 agosto de 2018

Jakelaitis A, Silva AA, Santos JB, Vivian R (2008) Qualidade da camada superficial de solo sob mata, pastagens e áreas cultivadas. Pesq Agropec Trop 38:118–127

Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil—V: a method for measuring soil biomass. Soil Biol Biochem 8:209–213. https://doi.org/10.1016/0038-0717(76)90005-5

Lana AMQ, Lana RMQ, Lemes EM, Reis GL, Moreira GHFA (2018) Influence of native or exotic trees on soil fertility in decades of silvopastoral system at the Brazilian savannah biome. Agrofor Syst 92:415–424. https://doi.org/10.1007/s10457-016-9998-8

Li Q, Feng J, Wu J, Jia W, Zhang Q, Chen Q, Zhang D, Cheng X (2019) Spatial variation in soil microbial community structure and its relation to plant distribution and local environments following afforestation in central China. Soil Till Res 193:8–16. https://doi.org/10.1016/j.still.2019.05.015

Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34:443–454. https://doi.org/10.1007/s13593-014-0212-y

Lu S, Meng P, Zhang J, Yin C, Sun S (2015) Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China. Environ Monit Assess 187:1–9. https://doi.org/10.1007/s10661-014-4131-9

Moreira GM, Neves JCL, Rocha GC, Magalhães CADS, Farias Neto AL, Meneguci JLP, Fernandes R (2018) Physical quality of soils under a crop-livestock-forest system in the cerrado/amazon transition region. Rev Arvore 42:1–10. https://doi.org/10.1590/1806-90882018000200013

Pardon P, Reubens B, Reheul D, Mertens J, Frenne P, Coussement T, Janssens P, Verheyen K (2017) Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric Ecosyst Environ 247:98–111. https://doi.org/10.1016/j.agee.2017.06.018

Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24:1–12. https://doi.org/10.1111/gcb.13850

Portilho IIR, Savin MC, Borges CD, Tsai SM, Mercante FM, Roscoe R, Carvalho LA (2018) Maintenance of N cycling gene communities with crop-livestock integration management in tropical agriculture systems. Agric Ecosyst Environ 267:52–62. https://doi.org/10.1016/j.agee.2018.08.005

Reis Junior FB, Mendes IC (2007) Biomassa microbiana do solo. Embrapa Cerrados, Planaltina

Rodrigues RC, Araújo RA, Costa CS, Lima AJ, Oliveira ME, Cutrim JA Jr, Santos FNS, Araújo JS, Santos VM, Araújo ASF (2015) Soil microbial biomass in an agroforestry system of Northeast Brazil. Trop Grassl-Forrajes Trop 3:41–48. https://doi.org/10.17138/TGFT(3)41-48

Santos FL, Paulino HB, Carneiro MAC, Caetano JO, Benites VM, Souza ED (2015) Atributos bioquímicos do solo sob diferentes sistemas de produção no sudoeste goiano. Glob Sci Technol 8:74–86. https://doi.org/10.14688/1984-3801/gst.v8n2p74-86

Schwab N, Schickhoff U, Fischer E (2015) Transition to agroforestry significantly improves soil quality: a case study in the central mid-hills of Nepal. Agric Ecosyst Environ 205:57–69. https://doi.org/10.1016/j.agee.2015.03.004

Silva MB, Kliemann HJ, Silveira PM, Lanna AC (2007) Atributos biológicos do solo sob influência da cobertura vegetal e do sistema de manejo. Pesq Agropec Bras 42:1755–1761

Srinivasarao C, Lal R, Kundu S, Babu MP, Venkateswarlu B, Singh AK (2014) Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Sci Total Environ 487:587–603. https://doi.org/10.1016/j.scitotenv.2013.10.006

Tonini H, Wink C, Ferreira e Silva AGM (2019) Sampling alternatives for eucaliptus trees in integrated crop-livestock-forest systems. Floresta Ambient 26:e20170893. https://doi.org/10.1590/2179-8087.089317

Tumwebaze SB, Byakagaba P (2016) Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agric Ecosyst Environ 216:188–193. https://doi.org/10.1016/j.agee.2015.09.037

Udawatta RP, Kremer RJ, Nelson KA, Jose S, Bardhan S (2014) Soil quality of a mature alley cropping agroforestry system in temperate north America. Commun Soil Sci Plant Anal 45:2539–2551. https://doi.org/10.1080/00103624.2014.932376

Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003

Weerasekara C, Udawatta RP, Jose S, Kremer RJ, Weerasekara C (2016) Soil quality differences in a row-crop watershed with agroforestry and grass buffers. Agrofor Syst 90:829–838. https://doi.org/10.1007/s10457-016-9903-5

Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigné J (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34:1–20. https://doi.org/10.1007/s13593-013-0180-7