Variable-complexity response surface approximations for wing structural weight in HSCT design

Computational Mechanics - Tập 18 - Trang 112-126 - 1996
M. Kaufman1, V. Balabanov1, A. A. Giunta1, B. Grossman1, W. H. Mason1, S. L. Burgee2, R. T. Haftka3, L. T. Watson4,5
1Virginia Tech, Dept. of Aerospace & Ocean Eng., Blacksburg, USA
2Virginia Tech, Dept. of Computer Science, Blacksburg, USA
3Dept. of Aero. Eng., Mech. & Eng. Sci., University of Florida, Gainesville, USA
4Virginia Tech, Dept. of Computer Sci., Blacksburg, USA
5Virginia Tech, Dept. of Math., Blacksburg, USA

Tóm tắt

A procedure for generating and using a polynomial approximation to wing bending material weight of a High Speed Civil Transport (HSCT) is presented. Response surface methodology is used to fit a quadratic polynomial to data gathered from a series of structural optimizations. Several techniques are employed in order to minimize the number of required structural optimizations and to maintain accuracy. First, another weight function based on statistical data is used to identify a suitable model function for the response surface. In a similar manner, geometric and loading parameters that are likely to appear in the response surface model are also identified. Next, simple analysis techniques are used to find regions of the design space where reasonable HSCT designs could occur. The use of intervening variables along with analysis of variance reduce the number of polynomial terms in the response surface model function. Structural optimization is then performed by the program GENESIS on a 28-node Intel Paragon. Finally, optimizations of the HSCT are completed both with and without the response surface.

Tài liệu tham khảo

Barthelemy, J. F. M.; Wrenn, G. A.; Dovi, A. R.; Coen, P. G.; Hall, L. E.: Supersonic Transport Wing Minimum Weight Design Integrating Aerodynamics and Structures, J. of Aircraft, Vol. 31, No. 2, March–April 1994, pp. 330–338 Box, G. E. P.; Behnken, D. W.: Some New Three Level Designs for the Study of Quantitative Variables, Technometrics, Vol. 2, No. 4, November, 1960, pp. 455–475 Box, M. J.; Draper, N. R.: Factorial Designs, the |XTX| Criterion, and Some Related Matters, Technometrics, Vol. 13, No. 4, 1971, pp. 731–742 Carlson, H. W.; Walkley, K. B.: Numerical Methods and a Computer Program for Subsonic and Supersonic Design and Analysis of Wings with Attainable Thrust Considerations, NASA CP 3808, 1984 Dudley, J.; Huang, X.; Haftka, R. T.; Grossman, B.; Mason, W. H.: Variable-Complexity Interlacing of Weight Equation and Structural Optimization for the Design of the High Speed Civil Transport, AIAA Paper 94-4377, 1994 Dudley, J.; Huang, X.; MacMillin, P. E.; Grossman, B.; Haftka, R. T.; Mason, W. H.: Multidisciplinary Optimization of the High-Speed Civil Transport, AIAA Paper 95-0124, 1995 Giunta, A. A.; Dudley, J. M.; Narducci, R.; Grossman, B.; Haftka, R. T.; Mason, W. H.; Watson, L. T.: Noisy Aerodynamic Response and Smooth Approximations in HSCT Design, AIAA Paper 94-4376, 1994 Grandhi, R. V.; Thareja, R.; Haftka, R. T.; NEWSUMT-A: A General Purpose Program for Constrained Optimization Using Approximation, ASME J. Mechanisms, Transmissions and Automation in Design, Vol. 107, 1985, pp. 94–99 Hinkelman, Klaus; Kempthorne, Oscar: Design and analysis of experiments, John Wiley & Sons, Inc., 1994, pp. 297–299 Huang, X.: Structural Optimization and its Interaction with Aerodynamic Optimization for a High Speed Civil Transport, Ph.D. Dissertation, VPI & SU, November 1994 Huang, X.; Haftka, R. T.; Grossman, B.; Mason, W.: Comparison of Statistical-based Weight Equations with Structural Optimization for Supersonic Transport Wings, AIAA Paper 94-4379, 1994 Hutchison, M. G.: Multidisciplinary Optimization of High-Speed Civil Transport Configurations Using Variable Complexity Modeling, Ph.D. Dissertation, VPI & SU, March 1993 Hutchison, M. G.; Huang, X.; Mason, W. H.; Haftka, R. T.; Grossman, B.: Variable-Complexity Aerodynamic-Structural Design of a High-Speed Civil Transport Wing, AIAA Paper 92-4695, 4th AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, OH, Sept. 21–23, 1992 Hutchison, M. G.; Unger, E. R.; Mason, W. H.; Grossman, B.; Haftka, R. T.: Aerodynamic Optimization of an HSCT Wing Using Variable-Complexity Modeling, Paper AIAA 93-0101, Jan. 1993 Hutchison, M. G.; Unger, E. R.; Mason, W. H.; Grossman, B.; Haftka, R. T.: Variable Complexity Aerodynamic-Structural Design of a High Speed Civil Transport Wing, AIAA Paper 92-4695, Sept. 1992 Hutchison, M. G.; Unger, E. R.; Mason, W. H.; Grossman, B.; Haftka, R. T.: Variable-Complexity Aerodynamic Optimization of an HSCT Wing Using Structural Wing-Weight Equations, J. Aircraft, Vol. 31, No. 1, 1994, pp. 110–116 Khuri, A. I.; Cornell, J. A.: Response Surfaces: Designs and Analyses, Marcel Dekker, New York, NY, 1987 Malone, B.; Woyak, S. A.: An Object-Oriented Analysis and Optimization Control Environment for the Conceptual Design of Aircraft, AIAA Paper 95-3862, 1st AIAA Aircraft Engineering, Technology, and Operations Congress, Los Angeles, CA, Sept. 19–21, 1995 Mason, R. L.; Gunst, R. F.; Hess, J. L.: Statistical Design and Analysis of Experiments, John Wiley & Sons, New York, N. Y., 1989, pp. 215–221 McCullers, L. A.: Aircraft Configuration Optimization Including Optimized Flight Profiles, Proceedings of a Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization, J. Sobieski, compiler, NASA Cp-2327, April 1984, pp. 395–412 Myers, R. H.; Montgomery, D. C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York, N. Y., 1995, pp. 650–651 Unger, E. R.; Hutchison, M. G.; Rais-Rohani, M.; Haftka, R. T.; Grossman, B.: Variable-Complexity Design of a Transport Wing, Intl. J. Systems Automation: Res. and Appl. (SARA), No. 2, 1992, pp. 87–113 Vanderplaats, Miura and Associates.: Inc., GENESIS User Manual, Version 1.3, Dec. 1993 Woyak, Scott A.; Malone, B.; and Myklebust, A.: An Architecture for Creating Engineering Applications: The Dynamic Integration System, Proceedings of the Computers in Engineering Conference and the Engineering Database Symposium, ASME, Sept. 17–20, 1995, Boston, MA, pp. 1–8