Values of Brownian intersection exponents, II: Plane exponents
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahlfors, L. V.,Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973.
Aizenman, M., Duplantier, B. &Aharony, A., Path crossing exponents and the external perimeter in 2D percolation.Phys. Rev. Lett., 83 (1999), 1359–1362.
Azencott, R., Behaviour of diffusion semi-groups at infinity.Bull. Soc. Math. France, 102 (1974), 193–240.
Bishop, C. J., Jones, P. W., Pemantle, R. &Peres, Y., The dimension of the Brownian frontier is greater than 1.J. Funct. Anal., 143 (1997), 309–336.
Burdzy, K. &Lawler, G. F., Non-intersection exponents for Brownian paths. Part I: Existence and an invariance principle.Probab. Theory Related Fields, 84 (1990), 393–410.
—, Non-intersection exponents for Brownian paths. Part II: Estimates and applications to a random fractal.Ann. Probab., 18 (1990), 981–1009.
Cardy, J. L., Conformal invariance and surface critical behavior.Nuclear Phys. B, 240 (1984), 514–532.
—, The number of incipient spanning clusters in two-dimensional percolation.J. Phys. A, 31 (1998), L105.
Cranston, M. &Mountford, T., An extension of a result of Burdzy and Lawler.Probab. Theory Related Fields, 89 (1991), 487–502.
Duplantier, B., Random walks and quantum gravity in two dimensions.Phys. Rev. Lett., 81 (1998), 5489–5492.
—, Two-dimensional copolymers and exact conformal multifractality.Phys. Rev. Lett., 82 (1999), 880–883.
—, Harmonic measure exponents for two-dimensional percolation.Phys. Rev. Lett., 82 (1999), 3940–3943.
Duplantier, B. &Kwon, K.-H., Conformal invariance and intersection of random walks.Phys. Rev. Lett., 61 (1988), 2514–2517.
Duplantier, B. &Saleur, H., Exact determination of the percolation hull exponent in two dimensions.Phys. Rev. Lett., 58 (1987), 2325–2328.
—, Long-range properties of spanning trees. Probabilistic techniques in equilibrium and nonequilibrium statistical physics.J. Math. Phys., 41 (2000), 1338–1363.
Lawler, G. F.,Intersections of Random Walks. Birkhäuser Boston, Boston, MA, 1991.
—, Hausdorff dimension of cut points for Brownian motion.Electron. J. Probab., 1:2 (1996), 1–20 (electronic).
—, Cut times for simple random walk.Electron. J. Probab., 1:13 (1996), 1–24 (electronic).
—, The dimension of the frontier of planar Brownian motion.Electron. Comm. Probab., 1:5 (1996), 29–47 (electronic).
Lawler, G. F., The frontier of a Brownian path is multifractal. Preprint, 1997.
—, Strict concavity of the intersection exponent for Brownian motion in two and three dimensions.Math. Phys. Electron. J., 4:5 (1998), 1–67 (electronic).
—, Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions, inRandom Walks (Budapest, 1998), pp. 219–258. Bolyai Soc. Math. Stud., 9. Janos Bolyai Math. Soc., Budapest, 1999.
Lawler, G. F. &Puckette, E. E., The intersection exponent for simple random walk.Combin. Probab. Comput., 9 (2000), 441–464.
Lawler, G. F., Schramm, O. &Werner, W., Values of Brownian intersection exponents, I: Half-plane exponents.Acta Math., 187 (2001), 237–273.
Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents, III: Two-sided exponents. To appear inAnn. Inst. H. Poincaré Probab. Statist. http://arxiv.org/abs/math.PR/0005294.
Lawler, G. F., Schramm, O. & Werner, W., Analyticity of intersection exponents for planar Brownian motion. To appear inActa Math., 188 (2002). http://arxiv.org/abs/math.PR/0005295.
Lawler, G. F., Schramm, O. & Werner, W., Sharp estimates for Brownian non-intersection probabilities. To appear inIn and Out of Equilibrium. Probability with a Physics Flavor. Progr. Probab. Birkhäuser Boston, Boston, MA.
Lawler, G. F. &Werner, W., Intersection exponents for planar Brownian motion.Ann. Probab., 27 (1999), 1601–1642.
—, Universality for conformally invariant intersection exponents.J. Eur. Math. Soc. (JEMS), 2 (2000), 291–328.
Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I.Math. Ann., 89 (1923), 103–121.
Madras, N. &Slade, G.,The Self-Avoiding Walk. Birkhäuser Boston, Boston, MA, 1993.
Mandelbrot, B. B.,The Fractal Geometry of Nature. Freeman, San Francisco, CA, 1982.
Nienhuis, B., Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas.J. Statist. Phys., 34 (1984), 731–761.
Revuz, D. &Yor, M.,Continuous Martingales and Brownian Motion. Grundlehren Math. Wiss., 293. Springer-Verlag, Berlin, 1991.
Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees.Israel J. Math., 118 (2000), 221–288.