Value of adenosine infusion for infarct size determination using real-time myocardial contrast echocardiography

Paulo Magno Martins Dourado1, Jeane Mike Tsutsui1, Antônio Carlos Palandri Chagas1, João Sbano1, Vera Demarchi Aiello1, Protásio Lemos da Luz1, Wilson Mathias1, José Antônio Franchini Ramires1
1Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil

Tóm tắt

Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS) in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE). Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin) was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC) staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004), with good correlation between measurements (r = 0.91; p < 0.01). The necrotic area determined by TTC was 2.29 ± 1.36 cm2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p < 0.001) then before it (r = 0.92; p = 0.0013). Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.

Từ khóa


Tài liệu tham khảo

Reimer KA, Jennings RB: The "wavefront phenomenon" of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979, 40: 633-644.

Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T: Clinical implications of the 'no reflow' phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996, 93: 223-228.

Villanueva FS, Glasheen WP, Sklenar J, Kaul S: Characterization of spatial patterns of flow within the reperfused myocardium by myocardial contrast echocardiography. Implications in determining extent of myocardial salvage. Circulation 1993, 88: 2596-2606.

Kloner RA, Ganote CE, Jennings RB: The "no-reflow" phenomenon after temporary coronary occlusion in the dog. J Clin Invest 1974, 54: 1496-1508.

Kaul S: Myocardial contrast echocardiography: 15 years of research and development. Circulation 1997, 96: 3745-3760.

Kaul S, Villanueva FS: Is the determination of myocardial perfusion necessary to evaluate the success of reperfusion when the infarct-related artery is open? Circulation 1992, 85: 1942-1944.

Vanhaecke J, Flameng W, Borgers M, Jang IK, Van de WF, De GH: Evidence for decreased coronary flow reserve in viable postischemic myocardium. Circ Res 1990, 67: 1201-1210.

Johnson WB, Malone SA, Pantely GA, Anselone CG, Bristow JD: No reflow and extent of infarction during maximal vasodilation in the porcine heart. Circulation 1988, 78: 462-472.

Porter TR, Xie F, Silver M, Kricsfeld D, Oleary E: Real-time perfusion imaging with low mechanical index pulse inversion Doppler imaging. J Am Coll Cardiol 2001, 37: 748-753. 10.1016/S0735-1097(00)01204-3

Pelberg RA, Wei K, Kamiyama N, Sklenar J, Bin J, Kaul S: Potential advantage of flash echocardiography for digital subtraction of B-mode images acquired during myocardial contrast echocardiography. J Am Soc Echocardiogr 1999, 12: 85-93. 10.1016/S0894-7317(99)70119-7

Porter TR, Xie F: Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Demonstration and potential mechanisms. Circulation 1995, 92: 2391-2395.

Jayaweera AR, Matthew TL, Sklenar J, Spotnitz WD, Watson DD, Kaul S: Method for the quantitation of myocardial perfusion during myocardial contrast two-dimensional echocardiography. J Am Soc Echocardiogr 1990, 3: 91-98.

Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W: Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 1981, 101: 593-600. 10.1016/0002-8703(81)90226-X

Lafitte S, Higashiyama A, Masugata H, Peters B, Strachan M, Kwan OL, DeMaria AN: Contrast echocardiography can assess risk area and infarct size during coronary occlusion and reperfusion: experimental validation. J Am Coll Cardiol 2002, 39: 1546-1554. 10.1016/S0735-1097(02)01771-0

Leong-Poi H, Coggins MP, Sklenar J, Jayaweera AR, Wang XQ, Kaul S: Role of collateral blood flow in the apparent disparity between the extent of abnormal wall thickening and perfusion defect size during acute myocardial infarction and demand ischemia. J Am Coll Cardiol 2005, 45: 565-572. 10.1016/j.jacc.2004.11.032

Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E: Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation 1980, 62: 945-952.

Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM: An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001, 218: 215-223.

Mahrholdt H, Wagner A, Judd RM, Sechtem U: Assessment of myocardial viability by cardiovascular magnetic resonance imaging. Eur Heart J 2002, 23: 602-619. 10.1053/euhj.2001.3038

Zhang Y, Chan AK, Yu CM, Yip GW, Fung JW, Lam WW, So NM, Wang M, Wu EB, Wong JT, Sanderson JE: Strain rate imaging differentiates transmural from non-transmural myocardial infarction: a validation study using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 2005, 46: 864-871. 10.1016/j.jacc.2005.05.054

Kaul S: Myocardial contrast echocardiography in acute myocardial infarction: time to test for routine clinical use? Heart 1999, 81: 2-5.

Ragosta M, Camarano G, Kaul S, Powers ER, Sarembock IJ, Gimple LW: Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction. New insights using myocardial contrast echocardiography. Circulation 1994, 89: 2562-2569.

Grayburn PA, Erickson JM, Escobar J, Womack L, Velasco CE: Peripheral intravenous myocardial contrast echocardiography using a 2% dodecafluoropentane emulsion: identification of myocardial risk area and infarct size in the canine model of ischemia. J Am Coll Cardiol 1995, 26: 1340-1347. 10.1016/0735-1097(95)00306-1

Kaul S, Glasheen W, Ruddy TD, Pandian NG, Weyman AE, Okada RD: The importance of defining left ventricular area at risk in vivo during acute myocardial infarction: an experimental evaluation with myocardial contrast two-dimensional echocardiography. Circulation 1987, 75: 1249-1260.

Agati L, Voci P, Bilotta F, Luongo R, Autore C, Penco M, Iacoboni C, Fedele F, Dagianti A: Influence of residual perfusion within the infarct zone on the natural history of left ventricular dysfunction after acute myocardial infarction: a myocardial contrast echocardiographic study. J Am Coll Cardiol 1994, 24: 336-342.