Value-Added Green Processing of Tomato Waste to Obtain a Stable Free-Flowing Powder Lycopene Formulation Using Supercritical Fluid Technology

Purlen Sezer Okur1, Ozan N. Ciftci1,2
1Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, USA
2Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA

Tóm tắt

The tomato processing industry generates large amounts of waste, which creates disposal problems and negatively impacts the environment. Tomato waste contains lycopene, high-value health- and wellness-promoting bioactive, and it is a potential source of natural lycopene for food and nutraceutical applications. However, isolation of lycopene from its source requires toxic solvents, and lycopene is unstable during storage. The objective of this study was to extract lycopene from tomato waste and to convert it to a shelf-stable and easy-to-use free-flowing powder form using green extraction and particle formation processes based on supercritical carbon dioxide (SC-CO2) technology. Lycopene was extracted using SC-CO2 and then loaded into hollow solid lipid microparticles using a particle formation process based on the atomization of SC-CO2-expanded lipids. Spherical free-flowing lycopene-loaded particles were obtained at different lycopene contents (30 and 50%, v/v). During 1-month storage at 4 and 22 °C, particles were stable in terms of morphology, polymorphism, and color. Lycopene loss was about 29% in the lipid particles at 22 °C, whereas it was 88% in the lycopene extract during 1-month storage. This green approach adds value to food processing waste and has the potential to generate bioactive carriers that are shelf-stable and convenient to store, handle, and transport.

Tài liệu tham khảo

Akhoond Zardini, A., Mohebbi, M., Farhoosh, R., & Bolurian, S. (2018). Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. Journal of Food Science and Technology, 55(1), 287–298. https://doi.org/10.1007/s13197-017-2937-5 Bae, E. K., & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 549–560. https://doi.org/10.1080/02652040802075682 Belayneh, H. D., Wehling, R. L., Cahoon, E., & Ciftci, O. N. (2015). Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. Journal of Supercritical Fluids, 104, 153–159. https://doi.org/10.1016/j.supflu.2015.06.002 Chang, R., Liu, B., Wang, Q., Zhang, J., Yuan, F., Zhang, H., Chen, S., Liang, S., & Li, Y. (2022). The encapsulation of lycopene with α-lactalbumin nanotubes to enhance their anti-oxidant activity, viscosity and colloidal stability in dairy drink. Food Hydrocolloids, 131. https://doi.org/10.1016/j.foodhyd.2022.107792 Cheng, Y. S., Lu, P. M., Huang, C. Y., & Wu, J. J. (2017). Encapsulation of lycopene with lecithin and α-tocopherol by supercritical antisolvent process for stability enhancement. Journal of Supercritical Fluids, 130, 246–252. https://doi.org/10.1016/j.supflu.2016.12.021 Chiu, Y. T., Chiu, C. P., Chien, J. T., Ho, G. H., Yang, J., & Chen, B. H. (2007). Encapsulation of lycopene extract from tomato pulp waste with gelatin and poly(γ-glutamic acid) as carrier. Journal of Agricultural and Food Chemistry, 55(13), 5123–5130. https://doi.org/10.1021/jf0700069 Ciftci, O. N., & Temelli, F. (2014). Melting point depression of solid lipids in pressurized carbon dioxide. Journal of Supercritical Fluids, 92, 208–214. https://doi.org/10.1016/j.supflu.2014.05.009 dos Santos, P. P., Paese, K., Guterres, S. S., Pohlmann, A. R., Costa, T. H., Jablonski, A., Flôres, S. H., & Rios, A. de O. (2015). Development of lycopene-loaded lipid-core nanocapsules: Physicochemical characterization and stability study. Journal of Nanoparticle Research, 17(2). https://doi.org/10.1007/s11051-015-2917-5 Durante, M., Lenucci, M. S., Marrese, P. P., Rizzi, V., De Caroli, M., Piro, G., Fini, P., Russo, G. L., & Mita, G. (2016). α-Cyclodextrin encapsulation of supercritical CO2 extracted oleoresins from different plant matrices: A stability study. Food Chemistry, 199, 684–693. https://doi.org/10.1016/j.foodchem.2015.12.073 Durante, M., Milano, F., de Caroli, M., Giotta, L., Piro, G., Mita, G., Frigione, M., & Lenucci, M. S. (2020). Tomato oil encapsulation by α-, β-, and γ-Cyclodextrins: A comparative study on the formation of supramolecular structures, antioxidant activity, and carotenoid stability. Foods, 9(11). https://doi.org/10.3390/foods9111553 Giuffrè, A. M., Capocasale, M., & Zappia, C. (2017). Tomato seed oil for edible use: Cold break, hot break, and harvest year effects. Journal of Food Processing and Preservation, 41(6). https://doi.org/10.1111/jfpp.13309 Hernández-Almanza, A., Montañez, J., Martínez, G., Aguilar-Jiménez, A., Contreras-Esquivel, J. C., & Aguilar, C. N. (2016). Lycopene: Progress in microbial production. In Trends in Food Science and Technology (Vol. 56, pp. 142–148). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2016.08.013 Ho, K. K. H. Y., Schroën, K., San Martín-González, M. F., & Berton-Carabin, C. C. (2017). Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins. Food Structure, 12, 34–42. https://doi.org/10.1016/J.FOOSTR.2016.12.001 Ho, K. K. H. Y., Schroën, K., San Martín-González, M. F., & Berton-Carabin, C. C. (2017). Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins. Food Structure, 12, 34–42. https://doi.org/10.1016/J.FOOSTR.2016.12.001 Jain, S., Winuprasith, T., & Suphantharika, M. (2020). Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocolloids, 104. https://doi.org/10.1016/j.foodhyd.2020.105730 Jenab, E., & Temelli, F. (2012). Density and volumetric expansion of carbon dioxide-expanded canola oil and its blend with fully-hydrogenated canola oil. Journal of Supercritical Fluids, 70, 57–65. https://doi.org/10.1016/j.supflu.2012.03.018 Kartal, C., Kaplan Türköz, B., & Otles, S. (2020). Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. Journal of Food Measurement and Characterization, 14(4), 1865–1883. https://doi.org/10.1007/s11694-020-00434-z Linke, A., Weiss, J., & Kohlus, R. (2020). Factors determining the surface oil concentration of encapsulated lipid particles: Impact of the emulsion oil droplet size. European Food Research and Technology, 246(10), 1933–1943. https://doi.org/10.1007/s00217-020-03545-5 MacHmudah, S., Zakaria, Winardi, S., Sasaki, M., Goto, M., Kusumoto, N., & Hayakawa, K. (2012). Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. Journal of Food Engineering, 108(2), 290–296. https://doi.org/10.1016/j.jfoodeng.2011.08.012 Ninčević Grassino, A., Djaković, S., Bosiljkov, T., Halambek, J., Zorić, Z., Dragović-Uzelac, V., Petrović, M., & Rimac Brnčić, S. (2020). Valorisation of tomato peel waste as a sustainable source for pectin, polyphenols and fatty acids recovery using sequential extraction. Waste and Biomass Valorization, 11(9), 4593–4611. https://doi.org/10.1007/s12649-019-00814-7 Pelissari, J. R., Souzaa, V. B., Pigosob, A. A., Tulinia, F. L., & Thomazini, M. (2016). Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food and Bioproducts Processing, 98, 86–94. Pérez-Masiá, R., Lagaron, J. M., & Lopez-Rubio, A. (2015). Morphology and stability of edible lycopene-containing micro- and nanocapsules produced through electrospraying and spray drying. Food and Bioprocess Technology, 8(2), 459–470. https://doi.org/10.1007/s11947-014-1422-7 Przybylska, S. (2020). Lycopene – A bioactive carotenoid offering multiple health benefits: A review. In International journal of food science and technology (Vol. 55, Issue 1, pp. 11–32). Blackwell Publishing Ltd. https://doi.org/10.1111/ijfs.14260 Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386–392. https://doi.org/10.1016/j.cep.2006.06.020 Rajan, A., Kumar, S., Sunil, C. K., Radhakrishnan, M., & Rawson, A. (2022). Recent advances in the utilization of industrial byproducts and wastes generated at different stages of tomato processing: Status report. In Journal of food processing and preservation (Vol. 46, Issue 11). John Wiley and Sons Inc. https://doi.org/10.1111/jfpp.17063 Rocha, G. A., Fávaro-Trindade, C. S., & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food and Bioproducts Processing, 90(1), 37–42. https://doi.org/10.1016/j.fbp.2011.01.001 Rosa, M. T. M. G., Alvarez, V. H., Albarelli, J. Q., Santos, D. T., Meireles, M. A. A., & Saldaña, M. D. A. (2020). Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation. Journal of Supercritical Fluids, 159. https://doi.org/10.1016/j.supflu.2019.03.011 Saldaña, M. D. A., Sun, L., Guigard, S. E., & Temelli, F. (2006). Comparison of the solubility of β-carotene in supercritical CO2 based on a binary and a multicomponent complex system. Journal of Supercritical Fluids, 37(3), 342–349. https://doi.org/10.1016/j.supflu.2006.01.010 Saldaña, M. D. A., Temelli, F., Guigard, S. E., Tomberli, B., & Gray, C. G. (2010). Apparent solubility of lycopene and β-carotene in supercritical CO2, CO2 + ethanol and CO2 + canola oil using dynamic extraction of tomatoes. Journal of Food Engineering, 99(1), 1–8. https://doi.org/10.1016/j.jfoodeng.2010.01.017 Santos, D. T., Martín, Á., Meireles, M. A. A., & Cocero, M. J. (2012). Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 61, 167–174. https://doi.org/10.1016/j.supflu.2011.09.011 Sato, K. (2001). Crystallization behaviour of fats and lipids—A review. In Chemical Engineering Science, 56(7), 2255–2265. https://doi.org/10.1016/S0009-2509(00)00458-9 Sato, K., & Ueno, S. (2011). Crystallization, transformation and microstructures of polymorphic fats in colloidal dispersion states. In Current opinion in colloid and interface science (Vol. 16, Issue 5, pp. 384–390). https://doi.org/10.1016/j.cocis.2011.06.004 Shu, B., Yu, W., Zhao, Y., & Liu, X. (2006). Study on microencapsulation of lycopene by spray-drying. Journal of Food Engineering, 76(4), 664–669. https://doi.org/10.1016/j.jfoodeng.2005.05.062 Souza, A. L. R., Hidalgo-Chávez, D. W., Pontes, S. M., Gomes, F. S., Cabral, L. M. C., & Tonon, R. V. (2018). Microencapsulation by spray drying of a lycopene-rich tomato concentrate: Characterization and stability. LWT, 91, 286–292. https://doi.org/10.1016/j.lwt.2018.01.053 Tan, C., Zhang, Y., Abbas, S., Feng, B., Zhang, X., & Xia, S. (2014). Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Colloids and Surfaces B: Biointerfaces, 123, 692–700. https://doi.org/10.1016/j.colsurfb.2014.10.011 Trombino, S., Cassano, R., Procopio, D., di Gioia, M. L., & Barone, E. (2021). Valorization of tomato waste as a source of carotenoids. In Molecules (Vol. 26, Issue 16). MDPI AG. https://doi.org/10.3390/molecules26165062 Ubeyitogullari, A., & Ciftci, O. N. (2022). Enhancing the bioaccessibility of lycopene from tomato processing byproducts via supercritical carbon dioxide extraction. Current Research in Food Science, 5, 553–563. https://doi.org/10.1016/j.crfs.2022.01.020 Vallecilla-Yepez, L., & Ciftci, O. N. (2018). Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using supercritical carbon dioxide. LWT, 95, 354–360. https://doi.org/10.1016/j.lwt.2018.04.065 Yang, J., & Ciftci, O. N. (2016a). Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide. Food Research International, 87, 83–91. https://doi.org/10.1016/j.foodres.2016.06.022 Yang, J., & Ciftci, O. N. (2016b). Formation of hollow solid lipid micro- and nanoparticles using supercritical carbon dioxide. Food and Bioproducts Processing, 98, 151–160. https://doi.org/10.1016/j.fbp.2016.01.004 Yang, J., & Ciftci, O. N. (2017). Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide. Food Chemistry, 231, 105–113. https://doi.org/10.1016/j.foodchem.2017.03.109 Yang, J., & Ciftci, O. N. (2020). Effect of chemical structure of solid lipid matrix on its melting behavior and volumetric expansion in pressurized carbon dioxide. JAOCS, Journal of the American Oil Chemists’ Society, 97(1), 105–113. https://doi.org/10.1002/aocs.12305 Zielińska, A., Ferreira, N. R., Feliczak-Guzik, A., Nowak, I., & Souto, E. B. (2020). Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharmaceutical Development and Technology, 25(7), 832–844. https://doi.org/10.1080/10837450.2020.1744008