Xác thực các bài kiểm tra giải trình tự thế hệ tiếp theo metagenomic cho việc phát hiện bệnh nhân toàn cầu

Archives of Pathology and Laboratory Medicine - Tập 141 Số 6 - Trang 776-786 - 2017
Robert Schlaberg1,2,3,4,5, Charles Y. Chiu1,2,3,4,5, Steve Miller1,2,3,4,5, Gary W. Procop1,2,3,4,5, George M. Weinstock1,2,3,4,5
1From the Department of Pathology, University of Utah, and the Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah (Dr Schlaberg); the Departments of Laboratory Medicine and Medicine, University of California, San Francisco (Dr Chiu); the Departments of Pathology and Laboratory Medicine, University of California, San Francisco (Dr Miller); the Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio (Dr Procop); and The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut (Dr Weinstock).
2The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut (Dr Weinstock).
3the Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio (Dr Procop)
4the Departments of Laboratory Medicine and Medicine, University of California, San Francisco (Dr Chiu)
5the Departments of Pathology and Laboratory Medicine, University of California, San Francisco (Dr Miller)

Tóm tắt

Ngữ cảnh.—

Giải trình tự metagenomic có thể được sử dụng để phát hiện bất kỳ tác nhân gây bệnh nào bằng cách sử dụng giải trình tự thế hệ tiếp theo (NGS) không thiên lệch, không cần khuếch đại cụ thể cho trình tự. Bằng chứng khái niệm đã được chứng minh trong các ổ dịch bệnh truyền nhiễm không rõ nguyên nhân và ở những bệnh nhân nghi ngờ nhiễm trùng nhưng có kết quả xét nghiệm âm tính với các phương pháp truyền thống. Các bài kiểm tra NGS metagenomic có tiềm năng lớn để cải thiện chẩn đoán bệnh truyền nhiễm, đặc biệt là ở những bệnh nhân có hệ miễn dịch yếu và bệnh nhân nặng.

Từ khóa

#Giải trình tự metagenomic #phát hiện tác nhân gây bệnh #xét nghiệm NGS #bệnh truyền nhiễm #phòng thí nghiệm lâm sàng.

Tài liệu tham khảo

Pfuntner A, Wier LM, Stocks C. Most frequent conditions in U.S. hospitals, 2011. Rockville, MD: Agency for Healthcare Research and Quality;2013. HCUP statistical brief no. 162.

Torio CM, Moore BJ. National inpatient hospital costs: the most expensive conditions by payer, 2013. Rockville, MD: Agency for Healthcare Research and Quality;2016. HCUP statistical brief no. 204.

Vora, 2014, Burden of encephalitis-associated hospitalizations in the United States, 1998-2010, Neurology, 82, 443, 10.1212/WNL.0000000000000086

van Gageldonk-Lafeber, 2005, A case-control study of acute respiratory tract infection in general practice patients in the Netherlands, Clin Infect Dis, 41, 490, 10.1086/431982

Louie, 2005, Characterization of viral agents causing acute respiratory infection in a San Francisco University Medical Center Clinic during the influenza season, Clin Infect Dis, 41, 822, 10.1086/432800

Ewig, 2002, Factors associated with unknown aetiology in patients with community-acquired pneumonia, Eur Respir J, 20, 1254, 10.1183/09031936.02.01942001

Glaser, 2009, Encephalitis: why we need to keep pushing the envelope, Clin Infect Dis, 49, 1848, 10.1086/648420

Glaser, 2006, Beyond viruses: clinical profiles and etiologies associated with encephalitis, Clin Infect Dis, 43, 1565, 10.1086/509330

Wilson, 2014, Actionable diagnosis of neuroleptospirosis by next-generation sequencing, N Engl J Med, 370, 2408, 10.1056/NEJMoa1401268

Naccache, 2014, A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples, Genome Res, 24, 1180, 10.1101/gr.171934.113

Graf, 2016, Unbiased detection of respiratory viruses by use of RNA sequencing-based metagenomics: a systematic comparison to a commercial PCR panel, J Clin Microbiol, 54, 1000, 10.1128/JCM.03060-15

Fischer, 2015, Evaluation of unbiased next-generation sequencing of RNA (RNA-seq) as a diagnostic method in influenza virus-positive respiratory samples, J Clin Microbiol, 53, 2238, 10.1128/JCM.02495-14

Phan, 2014, Cyclovirus in nasopharyngeal aspirates of Chilean children with respiratory infections, J Gen Virol, 95, 922, 10.1099/vir.0.061143-0

Alquezar-Planas, 2013, Discovery of a divergent HPIV4 from respiratory secretions using second and third generation metagenomic sequencing, Sci Rep, 3, 2468, 10.1038/srep02468

Greninger, 2010, A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America, PLoS One, 5, e13381, 10.1371/journal.pone.0013381

Swaminathan, 2016, Fatal zika virus infection with secondary nonsexual transmission, N Engl J Med, 375, 1907, 10.1056/NEJMc1610613

Flygare, 2016, Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling, Genome Biol, 17, 111, 10.1186/s13059-016-0969-1

Mongkolrattanothai, Neurobrucellosis: unexpected answer from metagenomic next-generation sequencing [published online ahead of print January 6, 2017], Pediatr Infect Dis J, 10.1093/jpids/piw066

Goldberg, 2015, Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics, MBio, 6, e01888, 10.1128/mBio.01888-15

Westblade, 2016, Role of clinicogenomics in infectious disease diagnostics and public health microbiology, J Clin Microbiol, 54, 1686, 10.1128/JCM.02664-15

Wood, 2014, Kraken: ultrafast metagenomic sequence classification using exact alignments, Genome Biol, 15, R46, 10.1186/gb-2014-15-3-r46

Ounit, 2015, CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers, BMC Genomics, 16, 236, 10.1186/s12864-015-1419-2

Huson, 2016, MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data, PLoS Comput Biol, 12, e1004957, 10.1371/journal.pcbi.1004957

Buchfink, 2015, Fast and sensitive protein alignment using DIAMOND, Nat Methods, 12, 59, 10.1038/nmeth.3176

New York State Department of Health, 2016, Validation of next generation sequencing (NGS)-based methods for identification and/or characterization of infectious agents (isolates only)

US Food and Drug Administration, 2016, Infectious disease next generation sequencing based diagnostic devices: microbial identification and detection of antimicrobial resistance and virulence markers; draft guidance for industry and Food and Drug Administration staff. 2016

Aziz, 2015, College of American Pathologists' laboratory standards for next-generation sequencing clinical tests, Arch Pathol Lab Med, 139, 481, 10.5858/arpa.2014-0250-CP

College of American Pathologists (CAP). CAP accreditation checklists—2016edition.http://www.cap.org/ShowProperty?nodePath=/UCMCon/Contribution Folders/WebContent/pdf/accreditation-checklists-full-listing.pdf. Accessed August 17, 2016.

Duncavage, 2016, A model study of in silico proficiency testing for clinical next-generation sequencing, Arch Pathol Lab Med, 140, 1085, 10.5858/arpa.2016-0194-CP

Schrijver, 2014, Methods-based proficiency testing in molecular genetic pathology, J Mol Diagn, 16, 283, 10.1016/j.jmoldx.2014.02.002

Clinical & Laboratory Standards Institute. Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline–Second Edition. Wayne, PA: Clinical & Laboratory Standards Institute;2012. Publication no. EP17-A2.

Briese, 2015, Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis, MBio, 6, e01491, 10.1128/mBio.01491-15

Wylie, 2015, Enhanced virome sequencing using targeted sequence capture, Genome Res, 25, 1910, 10.1101/gr.191049.115

Hasan, 2016, Depletion of human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-generation sequencing, J Clin Microbiol, 54, 919, 10.1128/JCM.03050-15

Gu, 2016, Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications, Genome Biol, 17, 41, 10.1186/s13059-016-0904-5

Lusk, 2014, Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data, PLoS One, 9, e110808, 10.1371/journal.pone.0110808

Strong, 2014, Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples, PLoS Pathog, 10, e1004437, 10.1371/journal.ppat.1004437

Naccache, 2013, The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns, J Virol, 87, 11966, 10.1128/JVI.02323-13

Heng Li, 2016, Wgsim Reads simulator

Kyrpides, 2014, Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains, PLoS Biol, 12, e1001920, 10.1371/journal.pbio.1001920

Rinke, 2013, Insights into the phylogeny and coding potential of microbial dark matter, Nature, 499, 431, 10.1038/nature12352

Anthony, 2013, A strategy to estimate unknown viral diversity in mammals, MBio, 4, e00598, 10.1128/mBio.00598-13

Petti CA, Bosshard PP, Brandt ME. Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing: Approved Guideline. Wayne, PA: Clinical and Laboratory Standards Institute;2008:viii.

Yilmaz, 2014, The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks, Nucleic Acids Res, 42, D643, 10.1093/nar/gkt1209

Ackelsberg, 2015, Lack of evidence for plague or anthrax on the New York City subway, Cell Syst, 1, 4, 10.1016/j.cels.2015.07.008

illumina, 2016, NextSeq Series of Sequencing Systems

Rosseel, 2014, False-positive results in metagenomic virus discovery: a strong case for follow-up diagnosis, Transbound Emerg Dis, 61, 293, 10.1111/tbed.12251