VO2‐Based Reconfigurable Antenna Platform with Addressable Microheater Matrix

Advanced Electronic Materials - Tập 3 Số 9 - 2017
Burak Gerislioglu1, Arash Ahmadivand1, Mustafa Karabiyik1, Raju Sinha1, Nezih Pala1
1Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA

Tóm tắt

This study reports on a reconfigurable antenna platform based on vanadium dioxide (VO2), a phase‐change material (PCM) with low transition temperature, integrated with an addressable microheater matrix. For the first time, it is shown that an entire planar antenna can be thermally reconfigured virtually to any pattern by switching the phase of the selected regions of the VO2 layer from insulator to metallic state by indirect thermal stimuli generated by individually addressable nichrome resistive microheaters. Careful selection of the individual pixels to start the phase transition from insulator (OFF) to metallic (ON) state allows creating different antenna patterns with unique resonance properties. Reconfiguring the antenna into different patterns, operating frequency can be tuned from C‐band (4–8 GHz) to X‐band (8–12 GHz), and S‐band (2–4 GHz) frequencies which cover the entire ultra wideband spectrum (3.1–10.6 GHz). The proposed approach provides a promising platform for designing monolithically integrated reconfigurable antennas, radio frequency devices, and circuits for various applications.

Từ khóa


Tài liệu tham khảo

10.1103/PhysRevLett.3.34

10.1117/1.2894146

10.1103/PhysRevB.11.4383

10.1088/0953-8984/12/41/310

10.1021/nl900676n

10.1126/science.1150124

10.1002/andp.20025140902

10.1088/1367-2630/6/1/052

10.1016/S0009-2614(00)01287-2

10.1103/PhysRevLett.72.3389

10.1103/PhysRevLett.87.237401

10.1063/1.3518508

10.1088/0964-1726/21/10/105009

10.1063/1.4966168

Wang M., 2016, IEEE Top. Meet. Silicon Monolithic Integr. Circuits in RF Sys., 38

10.1109/JMEMS.2013.2271774

10.1063/1.2815927

10.1103/PhysRevB.74.205103

10.1063/1.4952604

10.1038/srep42807

10.1021/nl1002153

10.1109/LAWP.2013.2296491

10.1109/LAWP.2009.2031989

10.1109/TAP.2004.841339

Bernhard J. T., 2001, IEEE Antennas Propag. Soc. Symp. Dig., 158

10.2528/PIER09040802

Pfeiffer U. R., 2014, IEEE Int. Solid‐State Circuits Conf., 256

10.1109/TAP.2011.2167925

10.1109/TAP.2005.863386

10.1109/TAP.2005.863398

10.1109/TAP.2005.863373

10.1109/MCOM.2004.1367557

10.1109/LAWP.2015.2407858

10.1109/TAP.2013.2293145

Huitema L., 2016, Int. Workshop on Antenna Technology (iWAT), 40

Shim Y., 2013, IEEE 26th Int. Conf. Micro Electro Mech. Syst., 237

10.1038/ncomms5314

10.1039/C5NR05512A

10.1038/nmat2226

10.1109/TED.2013.2296305

10.1063/1.348620

10.1109/LED.2013.2278816

10.1063/1.3212732

10.1109/MMM.2014.2332422

10.1109/TAP.2012.2224831

2002, FCC, First Rep. Order, 48

10.1109/TAP.2017.2670322

10.1109/LAWP.2014.2317211

10.1109/TAP.2009.2019990

10.1109/LAWP.2004.833981

10.1109/8.475932

10.1109/TAP.2004.825620

10.1109/LAWP.2010.2044860

COMSOL Multiphysics 5.2 COMSOL Inc.

Ansys HFSS 13.0 ANSYS Inc.

Auerkari P., 1996, Mechanical and Physical Properties of Engineering Alumina Ceramics

10.1063/1.326720

10.1149/1.1393935

10.1063/1.3394016

10.1109/DRC.2012.6257012

10.1063/1.4891239

Giancoli D. C., 1995, Physics: Principles with Applications

10.1007/s10717-015-9694-6

K. K. Kelley 1960 US: Bulletin 584 Washington DC

10.1109/TAP.2014.2327124

10.1109/LAWP.2014.2356135

10.1109/LAWP.2010.2050852

10.1002/mop.25950

10.1109/LAWP.2008.919621