VIR-SLAM: visual, inertial, and ranging SLAM for single and multi-robot systems
Tóm tắt
Monocular cameras coupled with inertial measurements generally give high performance visual inertial odometry. However, drift can be significant with long trajectories, especially when the environment is visually challenging. In this paper, we propose a system that leverages Ultra–WideBand (UWB) ranging with one static anchor placed in the environment to correct the accumulated error whenever the anchor is visible. We also use this setup for collaborative SLAM: different robots use mutual ranging (when available) and the common anchor to estimate the transformation between each other, facilitating map fusion. Our system consists of two modules: a double layer ranging, visual, and inertial odometry for single robots, and a transformation estimation module for collaborative SLAM. We test our system on public datasets by simulating UWB measurements as well as on real robots in different environments. Experiments validate our system and show our method can outperform pure visual-inertial odometry by more than 20%, and in visually challenging environments, our method works even when the visual-inertial pipeline has significant drift. Furthermore, we can compute the inter-robot transformation matrices for collaborative SLAM at almost no extra computation cost.
Tài liệu tham khảo
Barral, V., Suárez-Casal, P., Escudero, C., & García-Naya, J. (2016). Assessment of uwb ranging bias in multipath environments. In Proceedings of the international conference on indoor positioning and indoor navigation (IPIN), Alcala de Henares, Spain (pp. 4–7).
Bitcraze. (2020). Loco positioning system|Bitcraze. https://www.bitcraze.io/loco-pos-system/
Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., et al. (2016). The EuRoC micro aerial vehicle datasets. The International Journal of Robotics Research, 35(10), 1157–1163. https://doi.org/10.1177/0278364915620033.
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1332.
Cao, Y., Yang, C., Li, R., Knoll, A., & Beltrame, G. (2020). Accurate position tracking with a single UWB anchor. In 2020 IEEE international conference on robotics and automation (ICRA).
Choudhary, S., Carlone, L., Nieto, C., Rogers, J., Christensen, H. I., & Dellaert, F. (2017). Distributed mapping with privacy and communication constraints: Lightweight algorithms and object-based models. The International Journal of Robotics Research, 36(12), 1286–1311.
Cominelli, M., Patras, P., & Gringoli, F., (2019). Dead on arrival: An empirical study of the bluetooth 5.1 positioning system. In Proceedings of the 13th international workshop on wireless network testbeds, experimental evaluation & characterization—WiNTECH ’19 (pp. 13–20). ACM Press. https://doi.org/10.1145/3349623.3355475.
Decawave. (2014). DW1000 Radio IC. https://www.decawave.com/product/dw1000-radio-ic/.
Dellaert, F., & Kaess, M. (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research, 25(12), 1181–1203.
Delmerico, J., & Scaramuzza, D., (2018), A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots. In: 2018 IEEE international conference on robotics and automation (ICRA) (pp. 2502–2509). IEEE.
Durrant-Whyte, H., & Bailey, T. (2006). SLAM review simultaneous localization and mapping: Part I. IEEE Robotics & Automation Magazine, 13(2), 99–110.
Engel, J., Koltun, V., & Cremers, D. (2017). Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3), 611–625.
Engel, J., Koltun, V., & Cremers, D. (2018). Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3), 611–625. https://doi.org/10.1109/TPAMI.2017.2658577.
Fang, X., Wang, C., Nguyen, T. M., & Xie, L. (2018). Graph optimization approach to localization with range measurements. arXiv:1802.10276 [cs].
Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2017). On-manifold preintegration for real-time visual-inertial odometry. IEEE Transactions on Robotics, 33(1), 1–21. https://doi.org/10.1109/TRO.2016.2597321.
Goldsmith, A. (2005). Wireless communications. Cambridge University Press.
González, J., Blanco, J. L., Galindo, C., Ortiz-de Galisteo, A., Fernández-Madrigal, J. A., Moreno, F. A., et al. (2009). Mobile robot localization based on ultra-wide-band ranging: A particle filter approach. Robotics and Autonomous Systems, 57(5), 496–507.
Jourdan, D., Deyst, J., Win, M., & Roy, N., (2005). Monte Carlo localization in dense multipath environments using UWB ranging. In 2005 IEEE international conference on Ultra-Wideband (pp. 314–319). https://doi.org/10.1109/ICU.2005.1570005.
Khalajmehrabadi, A., Gatsis, N., & Akopian, D. (2017). Modern wlan fingerprinting indoor positioning methods and deployment challenges. IEEE Communications Surveys & Tutorials, 19(3), 1974–2002.
Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015). Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 34(3), 314–334.
Lohan, E. S., Talvitie, J., e Silva, P. F., Nurminen, H., Ali-Löytty, S., & Piché, R. (2015). Received signal strength models for wlan and ble-based indoor positioning in multi-floor buildings. In 2015 international conference on localization and GNSS (ICL-GNSS) (pp. 1–6). IEEE.
Lupton, T., & Sukkarieh, S. (2012). Preintegration\_visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Transactions on Robotics, 28(1), 61–76. https://doi.org/10.1109/TRO.2011.2170332.
Mai, V., Kamel, M., Krebs, M., Schaffner, A., Meier, D., Paull, L., et al. (2018). Local positioning system using UWB range measurements for an unmanned blimp. IEEE Robotics and Automation Letters, 3(4), 2971–2978.
Mangelson, J. G., Dominic, D., Eustice, R. M., & Vasudevan, R. (2018). Pairwise consistent measurement set maximization for robust multi-robot map merging. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 2916–2923). IEEE.
Martel, F. M., Sidorenko, J., Bodensteiner, C., Arens, M., & Hugentobler, U. (2019). Unique 4-DOF relative pose estimation with six distances for UWB/V-SLAM-based devices. Sensors, 19(20), 4366.
Mendoza-Silva, G. M., Torres-Sospedra, J., & Huerta, J. (2019). A meta-review of indoor positioning systems. Sensors, 19(20), 4507.
Mueller, M. W., Hamer, M., & D’Andrea, R., (2015). Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 1730–1736). IEEE. https://doi.org/10.1109/ICRA.2015.7139421
Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5), 1147–1163. https://doi.org/10.1109/TRO.2015.2463671.
Nguyen, T. H., Nguyen, T. M., & Xie, L. (2020). Tightly-coupled single-anchor ultra-wideband-aided monocular visual odometry system. In 2020 IEEE international conference on robotics and automation (ICRA).
Pleiades. (2020). Spiri. https://pleiadesrobotics.com/products/spiri-mu/.
Prorok, A., & Martinoli, A. (2014). Accurate indoor localization with ultra-wideband using spatial models and collaboration. The International Journal of Robotics Research, 33(4), 547–568.
Qin, T., Li, P., & Shen, S. (2018). VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4), 1004–1020. https://doi.org/10.1109/TRO.2018.2853729.
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. ArXiv preprint. arXiv:1804.02767.
Saeedi, S., Trentini, M., Seto, M., & Li, H. (2016). multi robot slam review multiple-robot simultaneous localization and mapping: A review. Journal of Field Robotics, 33(1), 3–46.
Savic, V., Larsson, E. G., Ferrer-Coll, J., & Stenumgaard, P. (2016). Kernel methods for accurate UWB-based ranging with reduced complexity. IEEE Transactions on Wireless Communications, 15(3), 1783–1793. https://doi.org/10.1109/TWC.2015.2496584.
Schmuck, P., & Chli, M. (2019). CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams. Journal of Field Robotics, 36(4), 763–781. https://doi.org/10.1002/rob.21854.
Shen, J., Jin, C., & Liu, D. (2016). A survey on the research of indoor rfid positioning system. In International conference on cloud computing and security (pp. 264–274). Springer.
Shi, Q., Cui, X., Li, W., Xia, Y., & Lu, M., (2018). Visual-UWB navigation system for unknown environments. In International technical meeting of the satellite division of the institute of navigation (ION GNSS+) (p. 11).
Tiemann, J., Ramsey, A., & Wietfeld, C., (2018). Enhanced UAV indoor navigation through SLAM-augmented UWB localization. In 2018 IEEE international conference on communications workshops (ICC workshops) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCW.2018.8403539
Trawny, N., Zhou, X. S., & Roumeliotis, S. I. (2009). 3D relative pose estimation from six distances. In: Proceedings of robotics: science and systems. https://doi.org/10.15607/RSS.2009.V.030.
Uradzinski, M., Guo, H., Liu, X., & Yu, M. (2017). Advanced indoor positioning using zigbee wireless technology. Wireless Personal Communications, 97(4), 6509–6518.
Wang, C., Zhang, H., Nguyen, T. M., & Xie, L. (2017). Ultra-wideband aided fast localization and mapping system. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp.s 1602–1609). IEEE.
Witkin, A. (1983). Scale-space filtering. In Processing of IJCAI.
Xu, H., Wang, L., Zhang, Y., Qiu, K., & Shen, S. (2020). Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm. In 2020 IEEE international conference on robotics and automation (ICRA).
YCHIOT (2019). YCHIOT Wenzhou Yanchuang IOT Technology. https://www.ychiot.com/.