VIP Regulates the Development & Proliferation of Treg in vivo in spleen
Tóm tắt
Mounting evidence supports a key role for VIP as an anti-inflammatory agent and promoter of immune tolerance. It suppresses TNF-α and other inflammatory cytokines and chemokines, upregulates anti-inflammatory IL-10, and promotes immune tolerant cells called T regulatory (Treg) cells. VIP KO mice have recently been demonstrated to have spontaneous airway and pulmonary perivascular inflammatory responses, as part of asthma-like and pulmonary hypertension phenotypes, respectively. Both inflammatory responses are correctable with VIP. Focusing on this model, we have now investigated the influence of VIP not only on inflammatory cells but also on Treg cells. Using flow cytometric analysis, we examined the relative preponderance of CD25+CD4+ cells and anti-inflammatory Treg cells, in extracts of thymus and spleen from VIP KO mice (5 VIP KO; 5 VIP KO+ VIP; 10 wild-type). This method allowed antibody-based flow cytometric identification of Treg cells using surface markers CD25 and CD4, along with the: 1) intracellular activation marker FoxP3; and 2) Helios, which distinguishes cells of thymic versus splenic derivation. Deletion of the VIP gene results in: 1) CD25+CD4- cell accumulation in the thymus, which is corrected by VIP treatment; 2) more Treg in thymus lacking Foxp3 expression, suggesting VIP is necessary for immune tolerance; and, 3) a tendency towards deficiency of Treg cells in the spleen, which is normalized by VIP treatment. Treg lacking Helios are induced by VIP intrasplenically rather than by migration from the thymus. These results confirm the dual role of VIP as an anti-inflammatory and immune tolerance-promoting agent.
Tài liệu tham khảo
Said SI: Vasoactive intestinal polypeptide (VIP): current status. Peptides. 1984, 5 (2): 143-50. 10.1016/0196-9781(84)90197-9.
Said SI: Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene. Circulation. 2007, 115: 1260-1268.
Li JM, Southerland L, Hossain MS, Giver CR, Wang Y, Darlak K, Harris W, Waschek J, Waller EK: Absence of vasoactive intestinal Peptide expression in hematopoietic cells enhances Th1 polarization and antiviral immunity in mice. J Immunol. 2011, 187 (2): 1057-65. 10.4049/jimmunol.1100686.
Yu R, Zhang H, Huang L, Liu X, Chen J: Anti-hyperglycemic, antioxidant and anti-inflammatory effects of VIP and a VPAC1 agonist on streptozotocin-induced diabetic mice. Peptides. 2011, 32 (2): 216-22. 10.1016/j.peptides.2010.11.017.
Deng S, Xi Y, Wang H, Hao J, Niu X, Li W, Tao Y, Chen G: Regulatory effect of vasoactive intestinal peptide on the balance of Treg and Th17 in collagen-induced arthritis. Cell Immunol. 2010, 265 (2): 105-10. 10.1016/j.cellimm.2010.07.010.
Jimeno R, Leceta J, Martínez C, Gutiérrez-Cañas I, Pérez-García S, Carrión M, Gomariz RP, Juarranz Y: Effect of VIP on the balance between cytokines and master regulators of activated helper T cells. Immunol Cell Biol. 2011,
Wang Y, Mei Y, Bao S, Xu L: Vasoactive intestinal polypeptide enhances oral tolerance by regulating both cellular and humoral immune responses. Clin Exp Immunol. 2007, 148 (1): 178-87. 10.1111/j.1365-2249.2007.03322.x.
Larocca L, Hauk V, Calafat M, Roca V, Fraccaroli L, Franchi A, Ramhorst R, Leirós CP: Modulation of macrophage inflammatory profile in pregnant nonobese diabetic (NOD) mice. Mol Cell Endocrinol. 2011, 333 (2): 112-8. 10.1016/j.mce.2010.11.035.
Camelo S, Lajavardi L, Bochot A, Goldenberg B, Naud MC, Brunel N, Lescure B, Klein C, Fattal E, Behar-Cohen F, de Kozak Y: Protective effect of intravitreal injection of vasoactive intestinal peptide-loaded liposomes on experimental autoimmune uveoretinitis. J Ocul Pharmacol Ther. 2009, 25 (1): 9-21. 10.1089/jop.2008.0074.
Delgado M, Chorny A, Gonzalez-Rey E, Ganea D: Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J Leukoc Biol. 2005, 78: 1327-1338. 10.1189/jlb.0605299.
Szema AM: Mice lacking the VIP gene show airway hyperresponsiveness and airway inflammation, partially reversible by VIP. Am J Physiol Lung Cell Mol Physiol. 2006, 291: L880-886. 10.1152/ajplung.00499.2005.
Delgado M, Gonzalez-Rey E, Ganea D: The neuropeptide vasoactive intestinal peptide generates tolerogenic dendritic cells. J Immunol. 2005, 175: 7311-7324.
Bluestone JA, Tang Q: How do CD4+CD25+ regulatory T cells control autoimmunity?. Curr Opin Immunol. 2005, 17: 638-642. 10.1016/j.coi.2005.09.002.
Fehervari Z, Sakaguchi S: CD4+ Tregs and immune control. J Clin Invest. 2004, 114: 1209-1217.
Prasse A: Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med. 2010, 182: 540-548. 10.1164/rccm.200909-1451OC.
Thornton AM: Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 184: 3433-3441.
Gonzalez-Rey E, Delgado M: Vasoactive intestinal peptide and regulatory T-cell induction: a new mechanism and therapeutic potential for immune homeostasis. Trends Mol Med. 2007, 13: 241-251. 10.1016/j.molmed.2007.04.003.
Nakashima H: CD22 expression mediates the regulatory functions of peritoneal B-1a cells during the remission phase of contact hypersensitivity reactions. J Immunol. 2010, 184: 4637-4645. 10.4049/jimmunol.0901719.
Tan YV: Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2009, 106: 2012-2017. 10.1073/pnas.0812257106.
Gonzalez-Rey E, Delgado M: Vasoactive intestinal peptide and regulatory T-cell induction: a new mechanism and therapeutic potential for immune homeostasis. Trends Mol Med. 2007, 13: 241-251. 10.1016/j.molmed.2007.04.003.
Colwell CS, Michel S, Itri I, Rodriguez W, Tam I, Lelievre V, Hu Z, Liu X, Waschek JA: Disrupted circadian rhythms in VIP and PHI deficeint mice. Am J Physiol Regul Integr Comp Physiol. 2003, 285: R939-R949.