VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis

Chandran S. Abhinand1, Rajesh Raju2, Sasikumar J. Soumya3, Prabha S. Arya1, P. R. Sudhakaran1
1Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695 581, India
2Computational Biology Group, Cancer Research Program-9, Rajiv Gandhi Centre for Biotechnology, KINFRA Campus, Thiruvananthapuram, Kerala, -695 585, India
3Inter-University Centre for Genomics and Gene Technology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695 581, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B, Adams RH (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484:110–114. doi: 10.1038/nature10908

Blanco R, Gerhardt H (2013) VEGF and notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3:a006569. doi: 10.1101/cshperspect.a006569

Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi: 10.1038/nature10144

Chatterjee S, Heukamp LC, Siobal M, Schöttle J, Wieczorek C, Peifer M, Frasca D, Koker M, König K, Meder L, Rauh D, Buettner R, Wolf J, Brekken RA, Neumaier B, Christofori G, Thomas RK, Ullrich RT (2013) Tumor VEGF: VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest 123:1732–1740. doi: 10.1172/JCI65385

Chen D, Li Y, Li Y, Jin L, Su Z, Yu Z, Yang S, Mao X, Lai Y (2016) Tumor suppressive microRNA-429 regulates cellular function by targeting VEGF in clear cell renal cell carcinoma. Mol Med Rep 13:1361–1366. doi: 10.3892/mmr.2015.4653

Chowdhury S, Sarkar RR (2015). Comparison of human cell signaling pathway databases—evolution, drawbacks and challenges. Database (Oxford). 2015:bau126. doi: 10.1093/database/bau126

Dejana E (2010) The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107:943–952. doi: 10.1161/CIRCRESAHA.110.223750

Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, G W, D’ Eustachio P, Schaefer C, et al. (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942. doi: 10.1038/nbt.1666

Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284. doi: 10.1016/j.devcel.2008.07.008

Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186. doi: 10.1056/NEJM197111182852108

Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177. doi: 10.1083/jcb.200302047

Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, et al. (2004) The HUPO PSI’s molecular interaction format–a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183. doi: 10.1038/nbt926

Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012. doi: 10.1016/j.cellsig.2007.05.013

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531. doi: 10.1093/bioinformatics/btg015

Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, Ikeda E, Takata S, Kobayashi K, Okada Y (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16:219–221. doi: 10.1096/fj.01-0332fje

Jiang BH, Liu LZ (2009) PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis. Adv Cancer Res 102: 19–65. doi: 10.1016/S0065-230X(09)02002-8

Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, GR W, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33(Database issue):D428–D432. doi: 10.1093/nar/gki072

Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, et al. (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11(1):R3. doi: 10.1186/gb-2010-11-1-r3

Karar J, Maity A (2011) PI3K/AKT/mTOR Pathway in Angiogenesis. Frontiers in Molecular Neuroscience 4

Kendall RL, Rutledge RZ, Mao X, Tebben AJ, Hungate RW, Thomas KA (1999) Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tyrosine residues. J Biol Chem 274:6453–6460. doi: 10.1074/jbc.274.10.6453

Khattab HM, Aoyama E, Kubota S, Takigawa M (2015) Physical interaction of CCN2 with diverse growth factors involved in chondrocyte differentiation during endochondral ossification. J Cell Commun Signal 9:247–254. doi: 10.1007/s12079-015-0290-x

Kitazume S, Imamaki R, Ogawa K, Taniguchi N (2014) Sweet role of platelet endothelial cell adhesion molecule in understanding angiogenesis. Glycobiology 24:1260–1264. doi: 10.1093/glycob/cwu094

Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor perspectives in medicine 2(7):a006502. doi: 10.1101/cshperspect.a006502

Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183. doi: 10.1042/BJ20110301

Korcsmaros T, Farkas IJ, Szalay MS, Rovó P, Fazekas D, Spiró Z, Böde C, Lenti K, Vellai T, Csermely P (2010) Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 26:2042–2050. doi: 10.1093/bioinformatics/btq310

Kumar VB, Binu S, Soumya SJ, Haritha K, Sudhakaran PR (2014) Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J 31:427–434. doi: 10.1007/s10719-014-9547-5

Kunhiraman H, Edatt L, Thekkeveedu S, Poyyakkara A, Raveendran V, Kiran MS, Sudhakaran PR, Kumar SV (2016) 2-Deoxy Glucose Modulates Expression and Biological Activity of VEGF in a SIRT-1 Dependent Mechanism. J Cell Biochem. doi: 10.1002/jcb.25629

Lamalice L, Le Boeuf FL, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794. doi: 10.1161/01.res.0000259593.07661.1e

Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309. doi: 10.1126/science.2479986

Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154–165. doi: 10.1089/152791601750294344 10.1016/j.ceb.2008.12.012

Nishimura D (2004). Biotech Software & Internet Report. 2(3): 117-120. doi:

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34

Oklu R, Walker TG, Wicky S, Hesketh R (2010) Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J Vasc Interv Radiol 21:1791–1805. doi: 10.1016/j.jvir.2010.08.009

Raju R, Nanjappa V, Balakrishnan L, Radhakrishnan A, Thomas JK, Sharma J, Tian M, Palapetta SM, Subbannayya T, Sekhar NR, Muthusamy B et al., (2011). NetSlim: high-confidence curated signaling maps. Database (Oxford) 2011:bar032. doi: 10.1093/database/bar032

Sawada J, Li F, Komatsu M (2015) R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells. J Vasc Res 52:347–359. doi: 10.1159/000444526

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res 37(Database issue):D674–D679. doi: 10.1093/nar/gkn653

Shibuya M (2014) VEGF-VEGFR Signals in Health and Disease. BiomolTher (Seoul) 22:1–9. doi: 10.4062/biomolther.2013.113

Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560. doi: 10.1016/j.yexcr.2005.11.012

Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. doi: 10.1038/nrm.2016.87

Soumya SJ, Athira AP, Binu S, Sudhakaran PR (2016). mTOR as a modulator of metabolite sensing relevant to angiogenesis. In: Maiese K (Ed.) Molecules to Medicine with mTOR: Translating Critical Pathways of the Mammalian Target of Rapamycin into Novel Therapeutic Strategies. Elsevier Science & Technology Books. Academic Press, USA. pp. 229–243. doi: 10.1016/B978-0-12-802733-2.00014-1

van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinforma 9:399. doi: 10.1186/1471-2105-9-399

Yamamizu K, Matsunaga T, Uosaki H, Fukushima H, Katayama S, Hiraoka-Kanie M, Mitani K, Yamashita JK (2010) Convergence of notch and beta-catenin signaling induces arterial fate in vascular progenitors. J Cell Biol 189:325–338. doi: 10.1083/jcb.200904114

Zhang G, Zhou J, Fan Q, Zheng Z, Zhang F, Liu X, Hu S (2008) Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. F EBS Lett 582:2957–2964. doi: 10.1016/j.febslet.2008.07.031

Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63:610–615. doi: 10.1016/j.addr.2010.11.001