Utilising cumulative antibiogram data to enhance antibiotic stewardship capacity in the Cape Coast Teaching Hospital, Ghana
Tóm tắt
Antimicrobial resistance (AMR) is a major public health challenge with its impact felt disproportionately in Western Sub-Saharan Africa. Routine microbiology investigations serve as a rich source of AMR monitoring and surveillance data. Geographical variations in susceptibility patterns necessitate regional and institutional tracking of resistance patterns to aid in tailored Antimicrobial Stewardship (AMS) interventions to improve antibiotic use in such settings. This study focused on developing a cumulative antibiogram of bacterial isolates from clinical samples at the Cape Coast Teaching Hospital (CCTH). This was ultimately to improve AMS by guiding empiric therapy. A hospital-based longitudinal study involving standard microbiological procedures was conducted from 1st January to 31st December 2020. Isolates from routine diagnostic aerobic cultures were identified by colony morphology, Gram staining, and conventional biochemical tests. Isolates were subjected to antibiotic susceptibility testing using Kirby-Bauer disc diffusion. Inhibitory zone diameters were interpreted per the Clinical and Laboratory Standards Institute guidelines and were entered and analysed on the WHONET software using the “first isolate only” principle. Overall, low to moderate susceptibility was observed in most pathogen-antibiotic combinations analysed in the study. Amikacin showed the highest susceptibility (86%, n = 537/626) against all Gram-negatives with ampicillin exhibiting the lowest (6%, n = 27/480). Among the Gram-positives, the highest susceptibilities were exhibited by gentamicin (78%, n = 124/159), with clindamycin having the lowest susceptibility (27%, n = 41/154). Among the Gram-negatives, 66% (n = 426/648) of the isolates were identified phenotypically as potential extended-spectrum beta-lactamase producers. Multiple multidrug-resistant isolates were also identified among both Gram-positive and Gram-negative isolates. Low to moderate susceptibility was found against first- and second-line antibiotics recommended in the National standard treatment guidelines (NSTG). Laboratory quality management deficiencies and a turnaround time of 3.4 days were the major AMS barriers identified. Low to moderate susceptibilities coupled with high rates of phenotypic resistance warrant tailoring NSTGs to fit local contexts within CCTH even after considering the biases in these results. The cumulative antibiogram proved a key AMS programme component after its communication to clinicians and subsequent monitoring of its influence on prescribing indicators. This should be adopted to enhance such programmes across the country.
Tài liệu tham khảo
Murray CJ, Shunji Ikuta K, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.
O’Neill J. Tackling drug-resistant infections globally: final report and recommendations the review on antimicrobial resistance. (2016). https://amr-review.org/sites/default/files/160518_Finalpaper_withcover.pdf. Accessed 27 Jul 2021.
World Health Organization. Antimicrobial stewardship programmes in health-care facilities in low- and middle-income countries: a WHO practical toolkit. Geneva: World Health Organization; 2019. p. 88.
Godman B, Egwuenu A, Haque M, Malande OO, Schellack N, Kumar S, et al. Strategies to improve antimicrobial utilization with a special focus on developing countries. Life. 2021;11(6):1–43.
Ministry of Health, Ministry of Food and Agriculture, Ministry of Environment, Science Technology and Innovation, Ministry of Fisheries and Aquaculture Development. Republic of Ghana Policy on Antimicrobial Use and Resistance 1st Edition, 2017. Accra; 2017. p. 48. https://www.moh.gov.gh/wp-content/uploads/2018/04/AMR-POLICY-A5_09.03.2018-Signed.pdf
Ministry of Health, Ministry of Food and Agriculture, Ministry of Fisheries and Aquaculture Development, Ministry of Environment, Science Technology and Innovation. Ghana National Action Plan for Antimicrobial Use and Resistance Republic of Ghana. 1st ed. Accra; 2017. p. 112 https://www.moh.gov.gh/wp-content/uploads/2018/04/NAP_FINAL_PDF_A4_19.03.2018-SIGNED-1.pdf
Ministry of Health Ghana. Standard treatment guidelines. Seventh. Accra: Ghana National Drugs Programme; 2017. p. 1416. https://www.moh.gov.gh/wp-content/uploads/2020/07/GHANA-STG-2017-1.pdf
World Health Organization. Regional office for South-East Asia. Step-by-step approach for development and implementation of hospital antibiotic policy and standard treatment guidelines. New Delhi: WHO Regional Office for South-East Asia; 2011. p. 49.
Afriyie DK, Sefah IA, Sneddon J, Malcolm W, McKinney R, Cooper L, et al. Antimicrobial point prevalence surveys in two Ghanaian hospitals: opportunities for antimicrobial stewardship. JAC-Antimicrobial Resist. 2020;2(1):1–9.
Kpokiri EE, Ladva M, Dodoo CC, Orman E, Aku TA, Mensah A, et al. Knowledge, awareness and practice with antimicrobial stewardship programmes among healthcare providers in a Ghanaian tertiary hospital. Antibiotics. 2022;11(1):6.
Kerr F, Sefah IA, Essah DO, Cockburn A, Afriyie D, Mahungu J, et al. Practical pharmacist-led interventions to improve antimicrobial stewardship in Ghana, Tanzania Uganda and Zambia. Pharmacy. 2021;20219(3):124.
Hindler JA, Barton M, Erdman SM, Evangelista AT, Jenkins SG, Johnston J, et al. M39-A4 analysis and presentation of cumulative antimicrobial susceptibility test data; Approved guideline: fourth edition. Vol. 34, Clinical and Laboratory Standards Institute (CLSI). 2014. https://clsi.org/standards/products/microbiology/documents/m39/
Moehring RW, Hazen KC, Hawkins MR, Drew RH, Sexton DJ, Anderson DJ. Challenges in preparation of cumulative antibiogram reports for community hospitals. J Clin Microbiol. 2015;53(9):2977–82.
CLSI. M100 performance standards for antimicrobial susceptibility testing. 30th ed, vol. 8. Pennsylvania: Clinical and Laboratory Standards Institute; 2020. p. 332.
Fridkin SK, Edwards JR, Tenover FC, Gaynes RP, McGowan JE. Antimicrobial resistance prevalence rates in hospital antibiograms reflect prevalence rates among pathogens associated with hospital-acquired infections. Clin Infect Dis. 2001;33(3):324–9.
World Health Organization. Community-based surveillance of antimicrobial use and resistance in resource-constrained settings report on five pilot projects. Geneva; 2009. https://apps.who.int/iris/bitstream/handle/10665/70036/WHO_EMP_MAR_2009.2_eng.pdf?sequence=1&isAllowed=y. Accessed 15 Feb 2022.
Bekoe A, Azorliade R, Ablordey A, Addo MG. Antibiotic resistance and genotypic detection of extended spectrum beta-lactamase producing pathogens in catheter associated urinary tract infection at a teaching facility in Kumasi Ghana. Afr J Microbiol Res. 2020;14(8):395–401.
Donkor ES, Horlortu PZ, Dayie NTKD, Obeng-Nkrumah N, Labi A. Community acquired urinary tract infections among adults in Accra. Ghana Infect Drug Resist. 2019;12:2059–67.
Feglo PK, Adu-Sarkodie Y. Antimicrobial resistance patterns of extended spectrum Β -lactamase producing Klebsiellae and E. coli Isolates from a Tertiary Hospital in Ghana. Eur Sci J. 2016;12(30):174–87.
Codjoe FS, Brown CA, Smith TJ, Miller K, Donkor ES. Genetic relatedness in carbapenem-resistant isolates from clinical specimens in Ghana using ERIC-PCR technique. PLoS ONE. 2019;14(9):1–11.
World Health Organization. WHO access, watch, reserve (AWaRe) classification of antibiotics for evaluation and monitoring of use. Geneva; 2021. https://www.who.int/publications/i/item/2021-aware-classification. Accessed 15 Feb 2022.
Tacconelli E, Carrara E, Savoldi A, Kattula D, Burkert F. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed 15 Feb 2022.
Afriyie DK, Sefah IA, Sneddon J, Malcolm W, McKinney R, Cooper L, et al. Antimicrobial point prevalence surveys in two Ghanaian hospitals: opportunities for antimicrobial stewardship. JAC-Antimicrobial Resis. 2020;2(1):dlaa1.
Amponsah OKO, Buabeng KO, Owusu-Ofori A, Ayisi-Boateng NK, Hämeen-Anttila K, Enlund H. Point prevalence survey of antibiotic consumption across three hospitals in Ghana. JAC-Antimicrobial Resist. 2021;3(1):dlab008. https://doi.org/10.1093/jacamr/dlab008.
Ankrah D, Owusu H, Aggor A, Osei A, Ampomah A, Harrison M, et al. Point prevalence survey of antimicrobial utilization in Ghana’s premier hospital: Implications for antimicrobial stewardship. Antibiotics. 2021;10(12):1528.
D’Arcy N, Ashiru-Oredope D, Olaoye O, Afriyie D, Akello Z, Ankrah D, et al. Antibiotic prescribing patterns in Ghana, Uganda, Zambia and Tanzania hospitals: results from the global point prevalence survey (G-PPS) on antimicrobial use and stewardship interventions implemented. Antibiotics. 2021;10(9):1122.
Donkor ES, Jamrozy D, Mills RO, Dankwah T, Amoo P, Egyir B, et al. A genomic infection control study for Staphylococcus aureus in two Ghanaian hospitals. Infect Drug Resist. 2018;11:1757–65.
Kpeli G, Buultjens AH, Giulieri S, Owusu-Mireku E, Aboagye SY, Baines SL, et al. Genomic analysis of ST88 community-acquired methicillin resistant Staphylococcus aureus in Ghana. PeerJ. 2017;2017(2):3047.
Egyir B, Bentum J, Attram N, Fox A, Obeng-Nkrumah N, Appiah-Korang L, et al. Whole genome sequencing and antimicrobial resistance of Staphylococcus aureus from surgical Site Infections in Ghana. Pathogens. 2021;10(196):13.
Alexander B, Roland A, Anthony A, Matthew GA. Antibiotic resistance and genotypic detection of extended spectrum beta-lactamase producing pathogens in catheter associated urinary tract infection at a teaching facility in Kumasi Ghana. Afr J Microbiol Res. 2020;14(8):395–401.
Prah JK, Amoah S, Ocansey DWK, Arthur R, Walker E, Obiri-Yeboah D. Evaluation of urinalysis parameters and antimicrobial susceptibility of uropathogens among out-patients at University of Cape Coast Hospital. Ghana Med J. 2019;53(1):44–51.
Newman MJ, Arhin RE, Donkor ES, Gyansa-Lutterodt M, Mills-Pappoe W. Laboratory-based nationwide surveillance of antimicrobial resistance in Ghana. Infect Drug Resist. 2015;8:379–89.
Andoh LA, Ahmed S, Olsen JE, Obiri-danso K, Newman MJ, Opintan JA, et al. Prevalence and characterization of Salmonella among humans in Ghana. Trop Med Health. 2017;45(3):1–11.
Acheampong G, Owusu M, Owusu-Ofori A, Osei I, Sarpong N, Sylverken A, et al. Chromosomal and plasmid-mediated fluoroquinolone resistance in human Salmonella enterica infection in Ghana. BMC Infect Dis. 2019;19(898):1–10.
Eibach D, Al-emran HM, Dekker M, Krumkamp R, Adu-Sarkodie Y, Maria L, et al. The emergence of reduced ciprofloxacin susceptibility in Salmonella enterica causing bloodstream infections in rural Ghana. Clin Infect Dis. 2016;62(Suppl 1):S32–6.
Gilbert DN, Eubanks N, Jackson J. Comparison of amikacin and gentamicin in the treatment of urinary tract infections. Am J Med. 1977;62(6):924–9.
Doern CD, Park JY, Gallegos M, Alspaugh D, Burnham CAD. Investigation of linezolid resistance in staphylococci and enterococci. J Clin Microbiol. 2016;54(5):1289.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. IDSA guidance on the treatment of antimicrobial-resistant gram-negative infections: version 1.0. A Focus on extended-spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant enterobacterales (CRE), and pseudomonas aeruginosa with difficult-to-treat resistance (DTRP. aeruginosa). 2020; p. 38. https://www.idsociety.org/practice-guideline/amr-guidance/#. Accessed 18 Feb 2022.
Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis. 2006;42(3):377–82.
Yansouni CP, Seifu D, Libman M, Alemayehu T, Gizaw S, Johansen ØH, et al. A feasible laboratory-strengthening Intervention yielding a sustainable clinical bacteriology sector to support antimicrobial stewardship in a large referral hospital in Ethiopia. Front Public Heal. 2020;8(June):1–10.
Perovic O, Yahaya AA, Viljoen C, Ndihokubwayo J, Smith M, Coulibaly SO, et al. External quality assessment of bacterial identification and antimicrobial susceptibility testing in African National public health laboratories, 2011–2016. Trop Med Infect Dis. 2019;4(144):1–10.
World Health Organization. Quality management system handbook. Version 1. Geneva: World Health Organization; 2011. p. 248.