Sử dụng tư duy hệ thống và sơ đồ vòng nguyên nhân để xác định các tác động lan tỏa của biến đổi khí hậu đến hệ thống cung cấp năng lượng sinh học

Springer Science and Business Media LLC - Tập 26 - Trang 1-48 - 2021
Fanny Groundstroem1, Sirkku Juhola1
1Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

Tóm tắt

Việc gia tăng sử dụng năng lượng sinh học, do sự thúc đẩy từ các chính sách khí hậu và năng lượng đầy tham vọng, đã dẫn đến sự gia tăng trong thương mại năng lượng sinh học quốc tế. Đồng thời, rõ ràng rằng mỗi nút trong chuỗi cung cấp năng lượng sinh học, từ việc trồng cây năng lượng đến sản xuất điện và nhiệt, đều dễ bị tổn thương trước các tác động của biến đổi khí hậu. Tuy nhiên, các đánh giá về biến đổi khí hậu liên quan đến chuỗi cung cấp năng lượng sinh học không tính đến tính toàn cầu của thị trường năng lượng sinh học, cũng như độ phức tạp và sự liên kết động giữa các tiểu hệ thống khác nhau trong đó chuỗi cung cấp năng lượng sinh học được nhúng, từ đó bỏ qua các tác động tiềm tàng chồng chéo và lan tỏa của biến đổi khí hậu. Trong bài báo này, tư duy hệ thống được sử dụng để phát triển một khung phân tích nhằm giải quyết khoảng trống này, và thông qua các sơ đồ vòng nguyên nhân, các tác động lan tỏa của biến đổi khí hậu được xác định cho một nghiên cứu điển hình liên quan đến việc nhập khẩu viên gỗ từ Hoa Kỳ vào Liên minh Châu Âu. Các phát hiện minh họa cách mà độ phức tạp và sự liên kết của hệ thống cung cấp viên gỗ khiến chuỗi cung cấp dễ bị ảnh hưởng bởi các tác động lan tỏa khác nhau của biến đổi khí hậu bắt nguồn từ các lĩnh vực môi trường, xã hội, chính trị và kinh tế, đồng thời nhấn mạnh giá trị của việc sử dụng các công cụ phân tích dựa trên hệ thống để nghiên cứu các hệ thống phức tạp và động như vậy.

Từ khóa

#biến đổi khí hậu #năng lượng sinh học #chuỗi cung cấp #tư duy hệ thống #sơ đồ vòng nguyên nhân

Tài liệu tham khảo

Acuna M, Strandgard M (2017) Impact of climate change on Australian forest operations. Aust For 80:299–308. https://doi.org/10.1080/00049158.2017.1395762 Adger WN, Brown I, Surminski S, Adger WN (2018) Advances in risk assessment for climate change adaptation policy. Philos Trans A Math Phys Eng Sci 376:1–13. https://doi.org/10.1098/rsta.2018.0106 Aggestam F, Konczal A, Sotirov M et al (2020) Can nature conservation and wood production be reconciled in managed forests? A review of driving factors for integrated forest management in Europe. J Environ Manage 268:110670. https://doi.org/10.1016/j.jenvman.2020.110670 Agusdinata DB, DeLaurentis D (2008) Specification of system-of-systems for policymaking in the energy sector. Integr Assess J 8:1–24. https://doi.org/10.1109/sysose.2006.1652298 An H, Wilhelm WE, Searcy SW (2011) Biofuel and petroleum-based fuel supply chain research: a literature review. Biomass Bioenergy 35:3763–3774. https://doi.org/10.1016/j.biombioe.2011.06.021 Arent DJ, Tol RSJ, Faust E et al (2014) Key economic sectors and services. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 664 672 Awudu I, Zhang J (2012) Uncertainties and sustainability concepts in biofuel supply chain management: a review. Renew Sustain Energy Rev 16:1359–1368. https://doi.org/10.1016/j.rser.2011.10.016 Barrette J, Thiffault E, Saint-Pierre F et al (2015) Dynamics of dead tree degradation and shelf-life following natural disturbances: can salvaged trees from boreal forests “fuel” the forestry and bioenergy sectors? Forestry 88:275–290. https://doi.org/10.1093/forestry/cpv007 Batidzirai B, Smeets EMW, Faaij APC (2012) Harmonising bioenergy resource potentials—methodological lessons from review of state of the art bioenergy potential assessments. Renew Sustain Energy Rev 16:6598–6630. https://doi.org/10.1016/J.RSER.2012.09.002 Bauer N, Rose SK, Fujimori S et al (2020) Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim Chang 163:1553-1568. https://doi.org/10.1007/s10584-018-2226-y Beach RH, Cai Y, Thomson A et al (2015) Climate change impacts on US agriculture and forestry: benefits of global climate stabilization. Environ Res Lett 10:095004. https://doi.org/10.1088/1748-9326/10/9/095004 Becker A, Ng AKY, McEvoy D, Mullett J (2018) Implications of climate change for shipping: ports and supply chains. Wiley Interdiscip Rev Clim Chang 9:1–18. https://doi.org/10.1002/wcc.508 Bierkandt R, Wenz L, Willner SN, Levermann A (2014) Acclimate—a model for economic damage propagation. Part 1: basic formulation of damage transfer within a global supply network and damage conserving dynamics. Environ Syst Decis 34:507–524. https://doi.org/10.1007/s10669-014-9523-4 Bitner-Gregersen EM, Vanem E, Gramstad O et al (2018) Climate change and safe design of ship structures. Ocean Eng 149:226–237. https://doi.org/10.1016/j.oceaneng.2017.12.023 Boby L, Hubbard W, Megalos M, Morris HLC (2016) Southern foresters’ perceptions of climate change: implications for educational program development. J Ext 54:6 Bollinger LA, Bogmans CWJ, Chappin EJL et al (2014) Climate adaptation of interconnected infrastructures: a framework for supporting governance. Reg Environ Chang 14:919–931. https://doi.org/10.1007/s10113-013-0428-4 Börjesson P, Hansson J, Berndes G (2017) Future demand for forest-based biomass for energy purposes in Sweden. For Ecol Manage 383:17–26. https://doi.org/10.1016/j.foreco.2016.09.018 Butler SM, Butler BJ, Markowski-Lindsay M (2017) Family forest owner characteristics shaped by life cycle, cohort, and period effects. Small-Scale For 16:1–18. https://doi.org/10.1007/s11842-016-9333-2 Calderón C, Colla M, Jossart J-M et al (2019) Bioenergy Europe Statistical Report 2019: Pellets. Bioenergy Europe, Brussels Carlton JS, Angel JR, Fei S et al (2014) State service foresters’ attitudes toward using climate and weather information when advising forest landowners. J For 112:9–14. https://doi.org/10.5849/jof.13-054 Carter L, Terando A, Dow K et al (2018) Southeast. In: Reidmiller DR, Avery CW, Easterling DR et al (eds) Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, vol II. U.S. Global Change Research Program, Washington D.C., pp 743-808 Challinor AJ, Adger WN, Benton TG et al (2018) Transmission of climate risks across sectors and borders. Philos Trans R Soc A 376:20170301. https://doi.org/10.1098/rsta.2017.0301 Chappin EJL, van der Lei T (2014) Adaptation of interconnected infrastructures to climate change: a socio-technical systems perspective. Util Policy 31:10–17. https://doi.org/10.1016/j.jup.2014.07.003 Conrad JL, Bolding MC, Smith RL, Aust WM (2011) Wood-energy market impact on competition, procurement practices, and profitability of landowners and forest products industry in the U.S. south. Biomass Bioenergy 35:280–287. https://doi.org/10.1016/j.biombioe.2010.08.038 Cristan R, Aust WM, Bolding MC et al (2016) Effectiveness of forestry best management practices in the United States: Literature review. For Ecol Manage 360:133–151. https://doi.org/10.1016/j.foreco.2015.10.025 Cronin J, Anandarajah G, Dessens O (2018) Climate change impacts on the energy system: a review of trends and gaps. Clim Change 151:79–93. https://doi.org/10.1007/s10584-018-2265-4 Dafnomilis I, Hoefnagels R, Pratama YW et al (2017) Review of solid and liquid biofuel demand and supply in Northwest Europe towards 2030 – a comparison of national and regional projections. Renew Sustain Energy Rev 78:31–45. https://doi.org/10.1016/j.rser.2017.04.108 Dafnomilis I, Lodewijks G, Junginger M, Schott DL (2018) Evaluation of wood pellet handling in import terminals. Biomass Bioenergy 117:10–23. https://doi.org/10.1016/j.biombioe.2018.07.006 Daioglou V, Doelman JC, Wicke B et al (2019) Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob Environ Chang 54:88–101. https://doi.org/10.1016/J.GLOENVCHA.2018.11.012 Daioglou V, Muratori M, Lamers P et al (2020) Implications of climate change mitigation strategies on international bioenergy trade. Clim Chang 163:1639–1658. https://doi.org/10.1007/s10584-020-02877-1 Dale VH, Kline KL, Parish ES et al (2017) Status and prospects for renewable energy using wood pellets from the southeastern United States. GCB Bioenergy 9:1296–1305. https://doi.org/10.1111/gcbb.12445 Dawson RJ, Thompson D, Johns D et al (2016) Infrastructure. In: UK climate change risk assessment evidence report. Report prepared for the Adaptation Sub-Committee of the Committee on Climate Change, London Delucchi MA (2010) Impacts of biofuels on climate change, water use, and land use. Ann N Y Acad Sci 1195:28–45. https://doi.org/10.1111/j.1749-6632.2010.05457.x Diaz-Chavez R, Walter A, Gerber P (2019) Socio-economic assessment of the pellets supply chain in the USA. IEA Bioenergy, Paris DOE-EPSA (2015) Climate change and the U.S. energy sector: regional vulnerabilities and resilience solutions. U.S. Department of Energy, Washington D.C Duden AS, Rubino MJ, Tarr NM et al (2018) Impact of increased wood pellet demand on biodiversity in the south-eastern United States. GCB Bioenergy 10:841–860. https://doi.org/10.1111/gcbb.12554 Duden AS, Verweij PA, Junginger HM (2017) Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States. Biofuels Bioprod Bioref 11:1007–1029. https://doi.org/10.1002/bbb Dulys-Nusbaum E, Klammer SSH, Swinton SM (2019) How willing are different types of landowner to supply hardwood timber residues for bioenergy? Biomass Bioenergy 122:45–52. https://doi.org/10.1016/j.biombioe.2019.01.026 Dwivedi P, Khanna M, Fuller M (2019) Is wood pellet-based electricity less carbon-intensive than coal-based electricity? It depends on perspectives, baselines, feedstocks, and forest management practices. Environ Res Lett 14:024006. https://doi.org/10.1088/1748-9326/aaf937 Easterling DR, Kunkel KE, Arnold JR et al (2017) Precipitation change in the United States. In: Wuebbles DJ, Fahey DW, Hibbard KA et al (eds) Climate Science Special Report: Fourth National Climate Assessment, vol I. U.S. Global Change Research Program, Washington D.C., pp 207-230 EC (2018) Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. European Commission, Brussels EC (2019) The bioeconomy in different countries. https://ec.europa.eu/knowledge4policy/visualisation/bioeconomy-different-countries_en. Accessed 4 Jun 2020 Egnell G, Börjesson P (2012) Theoretical versus market available supply of biomass for energy from long- rotation forestry and agriculture – Swedish experiences. IEA Bioenergy, Paris Ejelöv E, Nilsson A (2020) Individual factors influencing acceptability for environmental policies: a review and research agenda. Sustainability 12:2404. https://doi.org/10.3390/su12062404 Emodi NV, Chaiechi T, Rabiul Alam Beg A (2019) The impact of climate variability and change on the energy system: A systematic scoping review. Sci Total Environ 676:545–563. https://doi.org/10.1016/j.scitotenv.2019.04.294 EPA (2017) Multi-model framework for quantitative sectoral impacts analysis: a technical report for the Fourth National Climate Assessment. U.S. Environmental Protection Agency, Washington D.C Fant C, Boehlert B, Strzepek K et al (2020) Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure. Energy 195:116899. https://doi.org/10.1016/j.energy.2020.116899 Fei S, Desprez JM, Potter KM et al (2017) Divergence of species responses to climate change. Sci Adv 3:e1603055. https://doi.org/10.1126/sciadv.1603055 Fingerman KR, Nabuurs G-J, Iriarte L et al (2019) Opportunities and risks for sustainable biomass export from the south-eastern United States to Europe. Biofuels Bioprod Bioref 13:281–292. https://doi.org/10.1002/bbb.1845 Fridahl M, Lehtveer M (2018) Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers. Energy Res Soc Sci 42:155–165. https://doi.org/10.1016/j.erss.2018.03.019 Gaither CJ, Poudyal NC, Goodrick S et al (2011) Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach. For Policy Econ 13:24–36. https://doi.org/10.1016/j.forpol.2010.07.009 Galik CS, Abt RC (2016) Sustainability guidelines and forest market response: an assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy 8:658–669. https://doi.org/10.1111/gcbb.12273 Goetzl A (2015) Developments in the global trade of wood pellets. U.S. International Trade Commission, Washington D.C Gold S (2011) Bio-energy supply chains and stakeholders. Mitig Adapt Strateg Glob Chang 16:439–462. https://doi.org/10.1007/s11027-010-9272-8 Goldstein A, Turner WR, Gladstone J, Hole DG (2018) The private sector’s climate change risk and adaptation blind spots. Nat Clim Chang 9:18–25. https://doi.org/10.1038/s41558-018-0340-5 Groundstroem F, Juhola S (2018) A framework for identifying cross-border impacts of climate change on the energy sector. Environ Syst Decis 39:3–15. https://doi.org/10.1007/s10669-018-9697-2 Gruchy SR, Grebner DL, Munn IA et al (2012) An assessment of nonindustrial private forest landowner willingness to harvest woody biomass in support of bioenergy production in Mississippi: a contingent rating approach. For Policy Econ 15:140–145. https://doi.org/10.1016/j.forpol.2011.09.007 Haberl H, Erb KH, Krausmann F et al (2011) Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass Bioenergy 35:4753–4769. https://doi.org/10.1016/j.biombioe.2011.04.035 Halofsky JE, Andrews-Key SA, Edwards JE et al (2018) Adapting forest management to climate change: the state of science and applications in Canada and the United States. For Ecol Manage 421:84–97. https://doi.org/10.1016/j.foreco.2018.02.037 Hamelin L, Borzęcka M, Kozak M, Pudelko R (2019) A spatial approach to bioeconomy: quantifying the residual biomass potential in the EU-27. Renew Sustain Energy Rev 100:127–142. https://doi.org/10.1016/J.RSER.2018.10.017 Hansson J, Hackl R (2016) The potential influence of sustainability criteria on the European Union pellets market—the example of Sweden. Wiley Interdiscip Rev Energy Environ 5:413–429. https://doi.org/10.1002/wene.199 Haraldsson HV (2004) Introduction to system thinking and causal loop diagrams. Lund University, Lund Heinimö J (2008) Methodological aspects on international biofuels trade: international streams and trade of solid and liquid biofuels in Finland. Biomass Bioenergy 32:702–716. https://doi.org/10.1016/j.biombioe.2008.01.003 Heinimö J, Junginger M (2009) Production and trading of biomass for energy - an overview of the global status. Biomass Bioenergy 33:1310–1320. https://doi.org/10.1016/j.biombioe.2009.05.017 Helbing D (2013) Globally networked risks and how to respond. Nature 497:51–59. https://doi.org/10.1038/nature12047 Hochrainer-Stigler S, Colon C, Boza G et al (2020) Enhancing resilience of systems to individual and systemic risk: steps toward an integrative framework. Int J Disaster Risk Reduct 51:101868. https://doi.org/10.1016/j.ijdrr.2020.101868 Hoefnagels R, Junginger M, Resch G, Panzer C (2011) Long term potentials and costs of RES. Part II: The role of international biomass trade. RE-Shaping D12 Report. Intelligent Energy - Europe, Brussels. Hoefnagels R, Searcy E, Cafferty K (2014) Lignocellulosic feedstock supply systems with intermodal and overseas transportation. Biofuels Bioprod Bioref 8:246–256. https://doi.org/10.1002/bbb Hoegh-Guldberg O, Cai R, Poloczanska ES et al (2014) The ocean. In: Barros VR, Field CB, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1655-1731 Hoggett R (2014) Technology scale and supply chains in a secure, affordable and low carbon energy transition. Appl Energy 123:296–306. https://doi.org/10.1016/j.apenergy.2013.12.006 Horrocks L, Beckford J, Hodgson N et al (2010) Adapting the ICT sector to the impacts of climate change. Defra, Oxfordshire Hsiang S, Kopp R, Jina A et al (2017) Estimating economic damage from climate change in the United States. Science 356:1362–1369. https://doi.org/10.1126/science.aal4369 IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva Jaroszweski D, Chapman L, Petts J (2010) Assessing the potential impact of climate change on transportation: the need for an interdisciplinary approach. J Transp Geogr 18:331–335. https://doi.org/10.1016/J.JTRANGEO.2009.07.005 Johnston CMT, van Kooten GC (2016) Global trade impacts of increasing Europe’s bioenergy demand. J For Econ 23:27–44. https://doi.org/10.1016/j.jfe.2015.11.001 Joint Research Center (2019) Brief on biomass for energy in the European Union. European Commission, Brussels Jonker JGG, Junginger M, Faaij A (2014) Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. GCB Bioenergy 6:371–389. https://doi.org/10.1111/gcbb.12056 Jonsson R, Rinaldi F (2017) The impact on global wood-product markets of increasing consumption of wood pellets within the European Union. Energy 133:864–878. https://doi.org/10.1016/j.energy.2017.05.178 Junginger HM, Mai-Moulin T, Daioglou V et al (2019) The future of biomass and bioenergy deployment and trade: a synthesis of 15 years IEA Bioenergy Task 40 on sustainable bioenergy trade. Biofuels Bioprod Bioref 13:247–266. https://doi.org/10.1002/bbb.1993 Khanal PN, Grebner DL, Munn IA et al (2017) Typology of nonindustrial private forest landowners and forestry behavior: Implications for forest carbon sequestration in the southern US. Small-Scale For 16:419–434. https://doi.org/10.1007/s11842-017-9363-4 Kirkwood CW (1998) System dynamics methods: a quick introduction. Arizona State University, Tempe KNMI (2015) KNMI’14 climate scenarios for the Netherlands. Royal Netherlands Meteorological Institute, De Bilt Koetse MJ, Rietveld P (2009) The impact of climate change and weather on transport: an overview of empirical findings. Transp Res Part D Transp Environ 14:205–221. https://doi.org/10.1016/j.trd.2008.12.004 Kranzl L, Daioglou V, Faaij A et al (2014) Medium and long-term perspectives of international bioenergy trade. In: Junginger M, Goh CS, Faaij A (eds) International Bioenergy Trade: History, status & outlook on securing sustainable bioenergy supply, demand and markets. Springer Science+Business Media, Dordrecht Kreye MM, Rimsaite R, Adams DC (2019) Public attitudes about private forest management and government involvement in the southeastern United States. Forests 10:1–22. https://doi.org/10.3390/f10090776 Kymäläinen M, Mäkelä MR, Hildén K, Kukkonen J (2015) Fungal colonisation and moisture uptake of torrefied wood, charcoal, and thermally treated pellets during storage. Eur J Wood Wood Prod 73:709–717. https://doi.org/10.1007/s00107-015-0950-9 Lal P, Alavalapati JRR, Mercer ED (2011) Socio-economic impacts of climate change on rural United States. Mitig Adapt Strateg Glob Chang 16:819–844. https://doi.org/10.1007/s11027-011-9295-9 Lamers P, Hamelinck C, Junginger M, Faaij A (2011) International bioenergy trade - a review of past developments in the liquid biofuel market. Renew Sustain Energy Rev 15:2655–2676. https://doi.org/10.1016/j.rser.2011.01.022 Lamers P, Junginger M, Hamelinck C, Faaij A (2012) Developments in international solid biofuel trade - an analysis of volumes, policies, and market factors. Renew Sustain Energy Rev 16:3176–3199. https://doi.org/10.1016/j.rser.2012.02.027 Langholtz M, Webb E, Preston BL et al (2014) Climate risk management for the U.S. cellulosic biofuels supply chain. Clim Risk Manag 3:96–115. https://doi.org/10.1016/j.crm.2014.05.001 Lauri P, Havlík P, Kindermann G et al (2014) Woody biomass energy potential in 2050. Energy Policy 66:19–31. https://doi.org/10.1016/j.enpol.2013.11.033 Lawrence J, Blackett P, Cradock-Henry NA (2020) Cascading climate change impacts and implications. Clim Risk Manag 29:100234. https://doi.org/10.1016/j.crm.2020.100234 Magar SB, Pelkonen P, Tahvanainen L et al (2011) Growing trade of bioenergy in the EU: public acceptability, policy harmonization, European standards and certification needs. Biomass Bioenergy 35:3318–3327. https://doi.org/10.1016/j.biombioe.2010.10.012 Mandley SJ, Daioglou V, Junginger HM et al (2020) EU bioenergy development to 2050. Renew Sustain Energy Rev 127:109858. https://doi.org/10.1016/j.rser.2020.109858 Markolf SA, Hoehne C, Fraser A et al (2019) Transportation resilience to climate change and extreme weather events – Beyond risk and robustness. Transp Policy 74:174–186. https://doi.org/10.1016/j.tranpol.2018.11.003 Martinich J, Crimmins A (2019) Climate damages and adaptation potential across diverse sectors of the United States. Nat Clim Chang 9:397–404. https://doi.org/10.1038/s41558-019-0444-6 Matzenberger J, Kranzl L, Tromborg E et al (2015) Future perspectives of international bioenergy trade. Renew Sustain Energy Rev 43:926–941. https://doi.org/10.1016/j.rser.2014.10.106 McNichol BH, Montes CR, Barnes BF et al (2019) Interactions between southern Ips bark beetle outbreaks, prescribed fire, and loblolly pine (Pinus taeda L.) mortality. For Ecol Manage 446:164–174. https://doi.org/10.1016/J.FORECO.2019.05.036 McNulty S, Caldwell P, Doyle TW et al (2013) Forests and climate change in the southeast USA. In: Ingram K, Dow K, Carter L, Anderson J (eds) Climate of the southeast United States: Variability, change, impacts, and vulnerability. Island Press, Washington D.C., pp 165–189 McNulty S, Wiener S, Treasure E et al (2015) Southeast regional climate hub assessment of climate change vulnerability, and adaptation and mitigation strategies. US Department of Agriculture, Raleigh Mitchell SR, Harmon ME, O’Connell KEB (2012) Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy 4:818–827. https://doi.org/10.1111/j.1757-1707.2012.01173.x Morris HLC, Megalos MA, Hubbard WG, Boby LA (2016) Climate change attitudes of southern forestry professionals: Outreach implications. J For 114:532–540. https://doi.org/10.5849/jof.14-148 Nguyen TT, Tenhunen J (2013) Review of integrated ecological-economic analyses for bioenergy plants under climate change at local scale. Int J Clim Chang Strateg Manag 5:324–343. https://doi.org/10.1108/IJCCSM-04-2012-0020 Noss R (2016) Announcing the world’s 36th biodiversity hotspot: The North American coastal plain. Critical Ecosystem Partnership Fund https://www.cepf.net/stories/announcing-worlds-36th-biodiversity-hotspot-north-american-coastal-plain. Accessed 7 Apr 2020 O’Neill BC, Tebaldi C, van Vuuren DP et al (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482. https://doi.org/10.5194/gmd-9-3461-2016 Olsson O, Hillring B (2014) The wood fuel market in Denmark - price development, market efficiency and internationalization. Energy 78:141–148. https://doi.org/10.1016/j.energy.2014.09.065 Oswalt SN, Miles PD, Pugh SA, Smith WB (2018) Forest resources of the United States, 2017: a technical document supporting the Forest Service 2020 update of the RPA Assessment. U.S. Department of Agriculture, Forest Service, Washington D.C Otto C, Willner SN, Wenz L et al (2017) Modeling loss-propagation in the global supply network: the dynamic agent-based model acclimate. J Econ Dyn Control 83:232–269. https://doi.org/10.1016/j.jedc.2017.08.001 Paolotti L, Martino G, Marchini A et al (2015) Economic and environmental evaluation of transporting imported pellet: a case study. Biomass Bioenergy 83:340–353. https://doi.org/10.1016/J.BIOMBIOE.2015.09.011 Parish ES, Herzberger AJ, Phifer CC, Dale VH (2018) Transatlantic wood pellet trade demonstrates telecoupled benefits. Ecol Soc 23:28. https://doi.org/10.5751/ES-09878-230128 Paula AL, Bailey C, Barlow RJ, Morse W (2011) Landowner willingness to supply timber for biofuel: results of an Alabama survey of family forest landowners. South J Appl For 35:93–97. https://doi.org/10.1093/sjaf/35.2.93 Poudyal NC, Butler BJ, Hodges DG (2019) Spatial analysis of family forest landownership in the southern United States. Landsc Urban Plan 188:163–170. https://doi.org/10.1016/j.landurbplan.2018.10.018 Preston BL, Langholtz M, Eaton L et al (2017) Climate sensitivity of agricultural energy crop productivity. In: Efroymson RA, Langholtz MH, Johnson KE, Stokes BJ (eds) 2016 Billion-Ton Report: advancing domestic resources for a thriving bioeconomy. Volume 2: Environmental sustainability effects of select scenarios from Volume 1. U.S. Department of Energy, Oak Ridge, pp 519–554 Proskurina S, Junginger M, Heinimö J, Vakkilainen E (2017) Global biomass trade for energy – Part 1: Statistical and methodological considerations. Biofuels Bioprod Bioref 13:358–370. https://doi.org/10.1002/bbb Roni MS, Lamers P, Hoefnagels R (2018) Investigating the future supply distribution of industrial grade wood pellets in the global bioenergy market. Biofuels 7269:1–14. https://doi.org/10.1080/17597269.2018.1432268 Rytter L, Ingerslev M, Kilpeläinen A et al (2016) Increased forest biomass production in the Nordic and Baltic countries – a review on current and future opportunities. Silvia Fenn 50:1–33. https://doi.org/10.14214/sf.1660 Sanches-Pereira A, Gómez MF (2015) The dynamics of the Swedish biofuel system toward a vehicle fleet independent of fossil fuels. J Clean Prod 96:452–466. https://doi.org/10.1016/j.jclepro.2014.03.019 Schaeffer R, Szklo AS, de Lucena AFP et al (2012) Energy sector vulnerability to climate change: a review. Energy 38:1–12. https://doi.org/10.1016/j.energy.2011.11.056 Searchinger TD, Beringer T, Holtsmark B et al (2018) Europe’s renewable energy directive poised to harm global forests. Nat Commun 9:10–13. https://doi.org/10.1038/s41467-018-06175-4 Searle S, Malins C (2015) A reassessment of global bioenergy potential in 2050. GCB Bioenergy 7:328–336. https://doi.org/10.1111/gcbb.12141 Shughrue C, Seto KC (2018) Systemic vulnerabilities of the global urban-industrial network to hazards. Clim Change 151:173–187. https://doi.org/10.1007/s10584-018-2293-0 Sikkema R, Proskurina S, Banja M, Vakkilainen E (2021) How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy- and forestry sectors? Renew Energy 165:758–772. https://doi.org/10.1016/j.renene.2020.11.047 Slade R, Bauen A, Gross R (2014) Global Bioenergy Resources. Nat Clim Chang 4:99–105. https://doi.org/10.1038/nclimate2097 Steinberg DC, Mignone BK, Macknick J et al (2020) Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050. Clim Chang 158:125–139. https://doi.org/10.1007/s10584-019-02506-6 Sun L, Niquidet K (2017) Elasticity of import demand for wood pellets by the European Union. For Policy Econ 81:83–87. https://doi.org/10.1016/J.FORPOL.2017.02.001 Surendran Nair S, Kang S, Zhang X et al (2012) Bioenergy crop models: descriptions, data requirements, and future challenges. GCB Bioenergy 4:620–633. https://doi.org/10.1111/j.1757-1707.2012.01166.x Susaeta A, Carter DR, Adams DC (2014) Impacts of climate change on economics of forestry and adaptation strategies in the southern United States. J Agric Appl Econ 46:257–272. https://doi.org/10.1017/s1074070800000778 Sweet WV, Horton R, Kopp RE et al (2017) Sea level rise. In: Wuebbles DJ, Fahey DW, Hibbard KA et al (eds) Climate Science Special Report: Fourth National Climate Assessment, vol I. U.S. Global Change Research Program, Washington D.C., pp 333-363 Tenggren S, Olsson O, Vulturius G et al (2019) Climate risk in a globalized world: empirical findings from supply chains in the Swedish manufacturing sector. J Environ Plan Manag 63:1266–1282. https://doi.org/10.1080/09640568.2019.1660626 Thrän D, Schaubach K, Peetz D et al (2019) The dynamics of the global wood pellet markets and trade - key regions, developments and impact factors. Biofuels Bioprod Bioref 13:267–280. https://doi.org/10.1002/bbb.1910 Uasuf A, Becker G (2011) Wood pellets production costs and energy consumption under different framework conditions in Northeast Argentina. Biomass Bioenergy 35:1357–1366. https://doi.org/10.1016/j.biombioe.2010.12.029 Vainio A, Ovaska U, Varho V (2018) Not so sustainable? Images of bioeconomy by future environmental professionals and citizens. J Clean Prod 210:1396–1405. https://doi.org/10.1016/j.jclepro.2018.10.290 van den Hurk B, Otto IM, Reyer CPO et al (2020) What can COVID-19 teach us about preparing for climate risks in Europe? Policy Brief, Receipt and Cascades projects of the EU Horizon 2020. Barcelona Centre for International Affairs, Barcelona Vose JM, Peterson DL, Domke GM et al (2018) Forests. In: Reidmiller DR, Avery CW, Easterling DR et al (eds) Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, vol II. U.S. Global Change Research Program, Washington D.C., pp 232-267 Vose RS, Easterling DR, Kunkel KE et al (2017) Temperature changes in the United States. In: Wuebbles DJ, Fahey DW, Hibbard KA et al (eds) Climate Science Special Report: Fourth National Climate Assessment, vol I. U.S. Global Change Research Program, Washington D.C., pp 185-206 Wade CM, Baker JS, Latta G et al (2019) Projecting the spatial distribution of possible planted forest expansion in the United States. J For 117:560–578. https://doi.org/10.1093/jofore/fvz054 Webster E (2019) Transnational legal processes, the EU and RED II: strengthening the global governance of bioenergy. Rev Eur Comp Int Environ Law 29:86–94. https://doi.org/10.1111/reel.12315 Wehner MF, Arnold JR, Knutson T et al (2017) Droughts, floods, and wildfires. In: Wuebbles DJ, Fahey DW, Hibbard KA et al (eds) Climate Science Special Report: Fourth National Climate Assessment, vol I. U.S. Global Change Research Program, Washington D.C., pp 231-256 White W, Lunnan A, Nybakk E, Kulisic B (2013) The role of governments in renewable energy: the importance of policy consistency. Biomass Bioenergy 57:97–105. https://doi.org/10.1016/j.biombioe.2012.12.035 Whittaker C, Shield I (2017) Factors affecting wood, energy grass and straw pellet durability – a review. Renew Sustain Energy Rev 71:1–11. https://doi.org/10.1016/J.RSER.2016.12.119 Williams A, Kennedy S, Philipp F, Whiteman G (2017) Systems thinking: a review of sustainability management research. J Clean Prod 148:866–881. https://doi.org/10.1016/j.jclepro.2017.02.002 Wu YJ, Thomas V, Oliver R (2014) Forest change dynamics across levels of urbanization in the eastern United States. Southeast Geogr 54:406–420. https://doi.org/10.1353/sgo.2014.0029 Yang Z, Ng AKY, Lee PTW et al (2018) Risk and cost evaluation of port adaptation measures to climate change impacts. Transp Res D Transp Environ 61:444–458. https://doi.org/10.1016/j.trd.2017.03.004 Zhang C, Chen X, Li Y et al (2018) Water-energy-food nexus: Concepts, questions and methodologies. J Clean Prod 195:625–639. https://doi.org/10.1016/j.jclepro.2018.05.194