Using pseudo amino acid composition to predict protein structural class: Approached by incorporating 400 dipeptide components

Journal of Computational Chemistry - Tập 28 Số 9 - Trang 1463-1466 - 2007
Hao Lin1, Qian‐Zhong Li1
1Laboratory of Theoretical Biophysics, Department of Physics, College of Sciences and Technology, Inner Mongolia University, Hohhot 010021, People’s Republic of China

Tóm tắt

AbstractThe proteins structure can be mainly classified into four classes: all‐α, allβ, α/β, and α + β protein according to their chain fold topologies. For the purpose of predicting the protein structural class, a new predicting algorithm, in which the increment of diversity combines with Quadratic Discriminant analysis, is presented to study and predict protein structural class. On the basis of the concept of the pseudo amino acid composition (Chou, Proteins: Struct Funct Genet 2001, 43, 246; Erratum: Proteins Struct Funct Genet 2001, 44, 60), 400 dipeptide components and 20 amino acid composition are, respectively, selected as parameters of diversity source. Total of 204 nonhomologous proteins constructed by Chou (Chou, Biochem Biophys Res Commun 1999, 264, 216) are used for training and testing the predictive model. The predicted results by using the pseudo amino acids approach as proposed in this paper can remarkably improve the success rates, and hence the current method may play a complementary role to other existing methods for predicting protein structural classification. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

Từ khóa


Tài liệu tham khảo

10.1038/261552a0

10.1016/0022-2836(92)90396-2

10.1016/0014-5793(95)00245-5

10.1111/j.1432-1033.1992.tb17067.x

10.1002/pro.5560010312

10.1093/protein/7.3.319

10.1016/S0021-9258(17)31748-9

10.1002/prot.340210406

10.1023/A:1020713915365

10.1002/prot.1071

10.1093/protein/11.7.523

10.1023/A:1022576400291

10.1002/(SICI)1097-0134(19980401)31:1<97::AID-PROT8>3.0.CO;2-E

10.1006/bbrc.1999.1325

10.2174/1389203003381379

10.1016/S0097-8485(01)00113-9

10.1046/j.1432-1033.2002.03115.x

10.1016/j.bbrc.2004.07.059

10.1016/j.bbrc.2005.06.075

10.2174/092986606776819619

10.1080/07391102.2006.10507088

10.1093/bioinformatics/btl170

10.1016/j.bbrc.2004.07.059

10.2174/138920305774329368

10.1016/j.bbrc.2005.06.128

10.1186/1471-2105-7-20

10.1016/j.jtbi.2005.05.034

10.1016/j.jtbi.2006.06.025

10.1002/jcc.20354

10.1016/0022-5193(78)90302-8

10.1006/jtbi.2001.2441

10.1093/nar/gkg805

10.1093/protein/12.2.107

10.1023/A:1020696810938

10.1093/protein/12.12.1041

10.3109/10409239509083488

10.1002/1097-0282(20010415)58:5<491::AID-BIP1024>3.0.CO;2-I

Feng Z. P., 2002, In Silico Biol, 2, 291

10.1016/j.jtbi.2004.07.023

10.1007/s00726-004-0148-7

10.1016/j.jtbi.2005.02.008

10.1016/j.bbrc.2005.10.046

10.1016/j.bbrc.2005.08.160

10.1002/prot.20898

10.1007/s00726-005-0239-0

10.1007/s00726-006-0263-8

10.1007/s00726-006-0332-z

Wen Z., 2006, Amino Acids

10.1007/s00726-005-0225-6

10.1002/prot.1035

10.1093/bioinformatics/bth466