Using physiology and behaviour to understand the responses of fish early life stages to toxicants

Journal of Fish Biology - Tập 81 Số 7 - Trang 2175-2198 - 2012
Katherine A. Sloman1, Paul L. McNeil1
1Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley Campus, Paisley, Scotland PA1 2BE, U.K.

Tóm tắt

The use of early life stages of fishes (embryos and larvae) in toxicity testing has been in existence for a long time, generally utilizing endpoints such as morphological defects and mortality. Behavioural endpoints, however, may represent a more insightful evaluation of the ecological effects of toxicants. Indeed, recent years have seen a considerable increase in the use of behavioural measurements in early life stages reflecting a substantial rise in zebrafishDanio rerioearly life‐stage toxicity testing and the development of automated behavioural monitoring systems. Current behavioural endpoints identified for early life stages in response to toxicant exposure include spontaneous activity, predator avoidance, capture of live food, shoaling ability and interaction with other individuals. Less frequently used endpoints include measurement of anxiogenic behaviours and cognitive ability, both of which are suggested here as future indicators of toxicant disruption. For many simple behavioural endpoints, there is still a need to link behavioural effects with ecological relevance; currently, only a limited number of studies have addressed this issue. Understanding the physiological mechanisms that underlie toxicant effects on behaviour so early in life has received far less attention, perhaps because physiological measurements can be difficult to carry out on individuals of this size. The most commonly established physiological links with behavioural disruption in early life stages are similar to those seen in juveniles and adults including sensory deprivation (olfaction, lateral line and vision), altered neurogenesis and neurotransmitter concentrations. This review highlights the importance of understanding the integrated behavioural and physiological response of early life stages to toxicants and identifies knowledge gaps which present exciting areas for future research.

Từ khóa


Tài liệu tham khảo

Abrahams M., 2006, Fish Physiology, 79

10.1002/bdrc.20206

10.1016/S0269-7491(00)00221-9

10.1023/A:1007502209082

10.1002/etc.5620190722

10.1016/S0380-1330(90)71443-8

10.1002/etc.5620200427

10.1016/S0272-0590(83)80134-1

10.1016/j.aquatox.2006.06.015

10.1289/ehp.021101041

10.1016/j.taap.2007.06.025

10.1577/1548-8659(1985)114<577:CDILOS>2.0.CO;2

10.1590/S0100-879X2006000300011

Brauner C. J., 2002, Effect of long‐term silver exposure on survival and ionoregulatory development in rainbow trout (Oncorhynchus mykiss) embryos and larvae, in the presence and absence of added dissolved organic matter., Comparative Biochemistry and Physiology C, 113, 161

10.1007/s002440010149

10.1016/j.heares.2011.12.001

10.1016/j.ntt.2011.05.009

10.1016/j.ecoenv.2004.10.008

10.1021/es034857i

10.1016/j.ntt.2004.06.016

10.1023/A:1007780602426

10.1016/j.ntt.2011.09.003

10.1016/j.aquatox.2012.01.008

10.1093/toxsci/kfg046

10.1016/j.aquatox.2008.01.019

10.1016/j.taap.2008.11.013

10.1080/15287390701384726

10.1016/j.marenvres.2011.01.010

10.1002/etc.5620220214

Dial N. A., 1978, Some effects of methylmercury on development of the eye in medaka fish., Growth, 42, 309

Domingues I., 2010, Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults., Comparative Biochemistry and Physiology C, 338

10.1292/jvms.68.573

10.1016/j.jhazmat.2011.07.106

10.1016/j.ntt.2009.02.005

10.1016/j.bbr.2009.06.022

Ekker M., 2010, Fish Physiology, 2

Elliott J. M., 1994, Quantitative Ecology and the Brown Trout ., 10.1093/oso/9780198546788.001.0001

10.1016/j.aquatox.2005.10.004

10.1002/etc.5620180223

10.1007/BF00212563

10.1016/S0048-9697(98)00097-7

10.1016/j.aquatox.2009.04.007

10.1039/b701116d

10.1016/0160-4120(94)90138-4

10.1016/j.toxlet.2010.05.021

10.1016/S0166-445X(99)00004-1

10.1002/neu.20328

10.1007/s10162-002-3022-x

Haubruge E., 1997, L’acetylcholinestérase du système olfactif de la carpe Cyprinus carpio L. (poissons, Cyprinidae): formes moléculaires et inhibition in vivo et in vitro par le carbofuran., Belgian Journal of Zoology, 127, 63

10.1006/eesa.1997.1563

10.1016/j.cbpa.2009.05.009

10.1016/j.heares.2005.10.015

10.1017/S0025315400044490

Higgs D. M., 2006, The Physiology of Fishes, 389

10.1016/j.aquatox.2010.07.015

10.1016/j.aquatox.2004.05.001

10.1016/j.brainresbull.2009.04.013

10.1016/j.aquatox.2009.10.003

10.1016/j.aquatox.2007.07.003

10.2307/3223629

Karlsen H. E., 1987, Selective and reversible blocking of the lateral line in freshwater fish., Journal of Experimental Biology, 133, 249, 10.1242/jeb.133.1.249

10.1016/j.envpol.2007.06.069

10.1016/j.ecoenv.2009.04.014

10.1073/pnas.0803147105

10.1021/es104105e

10.1002/etc.5620191210

10.1016/S0269-7491(99)00330-9

10.1007/BF00000631

10.1016/j.aquatox.2007.03.002

10.1021/es902550x

10.1016/S0892-0362(02)00322-7

10.1016/j.ntt.2004.06.013

10.1016/j.aquatox.2009.06.002

10.1111/j.1095-8649.2000.tb00789.x

10.1897/05-241R.1

10.1002/etc.5620090103

Little E. E., 1985, Toxic Substances in the Aquatic Environment; An International Aspect, 72

Little E. E., 1993, Behavioural methods for assessing impacts of contaminants on early life stages of fishes., American Fisheries Society Symposium, 14, 67

10.1007/s10695-011-9583-z,1-12

10.1021/es070452c

10.1016/j.aquatox.2011.03.005

10.1038/nprot.2009.225

10.1016/j.pnpbp.2011.01.006

10.1016/j.ntt.2011.08.006

10.1016/j.aquatox.2008.05.001

10.3354/meps252295

10.1016/j.aquatox.2008.12.002

10.1016/S0166-445X(99)00105-8

10.1007/BF01685847

10.1111/j.1095-8649.1996.tb01470.x

10.1006/pest.1998.2366

10.1016/S0166-445X(00)00133-8

Mukai Y., 1994, The relationship between the length of the cupulae of free neuromasts and feeding ability in larvae of the willow shiner Gnathopogon elongates caerulescens (Teleostei, Cyprinidae)., Journal of Experimental Biology, 197, 399, 10.1242/jeb.197.1.399

10.1016/S0378-5955(03)00259-4

10.1111/j.1600-0773.1996.tb00234.x

10.1016/j.brainres.2008.05.049

10.1038/nclimate1352

10.1111/j.0022-1112.2004.00561.x

10.1016/j.brainres.2008.09.050

10.1002/tox.20272

10.1577/1548-8659(1996)125<0983:DOSBIL>2.3.CO;2

10.1016/0166-445X(88)90153-1

10.1016/j.aquatox.2010.07.006

10.1016/j.heares.2007.07.003

10.1371/journal.pgen.1000020

10.1007/BF01608108

10.1897/08-556.1

10.1897/02-610

10.1002/etc.5620210719

10.1007/978-94-011-1578-0

10.1016/S0361-9230(01)00699-2

10.1016/j.ntt.2010.01.009

10.1016/j.ntt.2010.10.006

10.1089/zeb.2008.0551

10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K

Rand G. M., 1985, Fundamentals of Aquatic Toxicology: Methods and Applications, 221

10.1016/j.aquatox.2011.08.014

10.1016/j.vascn.2008.04.002

10.1371/journal.pone.0029132

10.1016/S0166-445X(00)00128-4

10.1139/f04-011

10.1016/j.envint.2010.11.004

10.1016/j.aquatox.2004.03.016

10.1242/jeb.00353

10.1016/j.yhbeh.2010.05.010

10.1016/j.physbeh.2010.01.027

Sloman K. A., 2006, Fish Physiology, 413

10.1002/etc.5620210620

10.1016/S0166-445X(03)00122-X

10.1016/j.ntt.2009.09.004

10.1007/s001289900236

10.1016/j.aquatox.2009.10.008

10.1016/j.pnpbp.2010.10.010

10.1016/j.bbr.2011.03.025

Stegeman J. J., 2010, Fish Physiology, 367

10.1111/j.1095-8649.1997.tb01621.x

10.1371/journal.pone.0029727

10.1584/jpestics.9.463

10.1590/S0100-879X2006000700017

10.1038/ncomms1171

10.1016/j.aquatox.2009.09.019

10.1021/es801636v

10.1016/j.chemosphere.2005.05.037

10.1002/bdra.20281

10.1016/j.aquatox.2010.06.009

10.1065/espr2005.04.245

10.1023/A:1007747316943

10.1111/j.1095-8649.2006.01068.x

Weber D. N., 1994, Aquatic Toxicology: Molecular, Biochemical and Cellular Perspectives, 421

Weis J. S., 1989, Effects of environmental pollutants on early fish development., Reviews in Aquatic Sciences, 1, 45

10.1139/f95-809

10.1002/etc.5620140117

10.1016/S0022-0981(97)00134-2

10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2

10.1016/S0141-1136(02)00204-0

10.1201/9781315109244-2

10.1007/s00244-003-0122-5

Xu C., 2010, Fish Physiology, 346

Xu X., 2012, Developmental methylmercury exposure affects avoidance learning outcomes in adult zebrafish., Journal of Toxicology and Environmental Health Sciences, 4, 85

10.1016/j.ntt.2011.10.004

10.1016/S0166-445X(98)00052-6

10.1016/0141-1136(95)00048-8

10.1016/S0742-8413(99)00077-8

10.1007/s002440010219

10.1016/j.aquatox.2009.10.006