Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment

Diversity and Distributions - Tập 13 Số 3 - Trang 252-264 - 2007
Simon Ferrier1, Glenn Manion1, Jane Elith2, Karen Richardson3
1New South Wales Department of Environment and Conservation, PO Box 402, Armidale, New South Wales 2350, Australia
2School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia; and
3Department of Geography, McGill University, Montréal, Québec H3A 2K6, Canada

Tóm tắt

ABSTRACT

Generalized dissimilarity modelling (GDM) is a statistical technique for analysing and predicting spatial patterns of turnover in community composition (beta diversity) across large regions. The approach is an extension of matrix regression, designed specifically to accommodate two types of nonlinearity commonly encountered in large‐scaled ecological data sets: (1) the curvilinear relationship between increasing ecological distance, and observed compositional dissimilarity, between sites; and (2) the variation in the rate of compositional turnover at different positions along environmental gradients. GDM can be further adapted to accommodate special types of biological and environmental data including, for example, information on phylogenetic relationships between species and information on barriers to dispersal between geographical locations. The approach can be applied to a wide range of assessment activities including visualization of spatial patterns in community composition, constrained environmental classification, distributional modelling of species or community types, survey gap analysis, conservation assessment, and climate‐change impact assessment.

Từ khóa


Tài liệu tham khảo

10.1111/j.1654-1103.2006.tb02426.x

10.1126/science.1066854

10.1023/A:1009763730207

Department of Environment and Conservation, 2004, Nandewar biodiversity surrogates: vegetation

10.1126/science.295.5555.636

10.1111/j.2006.0906-7590.04596.x

10.1016/S0169-2046(00)00068-2

10.1016/0006-3207(92)91201-3

Faith D.P., 2002, Linking beta diversity, environmental variation, and biodiversity assessment, Science, 296

10.1007/BF00038687

10.1007/BF00056387

10.1080/0266476042000214501

10.1080/10635150252899806

10.1023/A:1021374009951

Ferrier S., 1999, The other 99%. The conservation and biodiversity of invertebrates, 68, 10.7882/RZSNSW.1999.013

10.1111/j.1365-2664.2006.01149.x

10.1641/0006-3568(2004)054[1101:MMOTBF]2.0.CO;2

10.1111/j.1095-8312.2005.00520.x

10.2307/1935348

10.1007/s00382-003-0340-6

10.1016/j.tree.2004.07.006

10.1890/06-0539

10.1007/s00267-003-1084-0

Hastie T.J., 1990, Generalised additive models

10.1046/j.1365-2656.2003.00710.x

10.2307/1939924

10.1890/05-0549

10.1111/j.1558-5646.1994.tb02191.x

Legendre P., 1998, Numerical ecology. Second English edition

10.1162/neco.1995.7.1.72

10.1016/0006-3207(89)90014-1

10.1007/BF02515450

10.1038/35012251

10.1007/978-1-4899-3242-6

McNaughton S.J., 1994, Systematics and conservation evaluation, 41, 10.1093/oso/9780198577713.003.0004

10.2307/3236395

10.1017/S0031182099004795

Rainforest CRC, 2003, Environmental attribute surfaces for the wet tropics bioregion (including far North Queensland NRM planning region)

10.1214/ss/1177012761

10.1126/science.297.5586.1439a

10.1007/BF00137609

10.2307/2413122

10.1111/j.1523-1739.2005.00237.x

10.1111/j.1466-822X.2005.00158.x

10.1890/04-0077

10.1890/0012-9658(2006)87[2697:AOEBDU]2.0.CO;2

10.1146/annurev.ecolsys.33.010802.150448

10.1007/978-1-4615-6953-4_1

10.1007/BF00047100

10.1111/j.2044-8317.1997.tb01102.x