Using a constraint-based regression method for relative quantification of somatic mutations in pyrosequencing signals: a case for NRAS analysis

Springer Science and Business Media LLC - Tập 11 - Trang 1-10 - 2016
Jerome Ambroise1, Jamal Badir1, Louise Nienhaus1, Annie Robert2, Anne-France Dekairelle1, Jean-Luc Gala1
1Institut de Recherche Expérimentale et Clinique (IREC), Center for Applied Molecular Technologies (CTMA), Université catholique de Louvain, Brussels, Belgium
2Epidemiology and Biostatistics Department (EPID), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium

Tóm tắt

Pyrosequencing Allele Quantification (AQ) is a cost-effective DNA sequencing method that can be used for detecting somatic mutations in formalin-fixed paraffin-embedded (FFPE) samples. The method displays a low turnaround time and a high sensitivity. Pyrosequencing suffers however from two main drawbacks including (i) low specificity and (ii) difficult signal interpretation when multiple mutations are reported in a hotspot genomic region. Using a constraint-based regression method, the new AdvISER-PYRO-SMQ algorithm was developed in the current study and implemented into an R package. As a proof-of-concept, AdvISER-PYRO-SMQ was used to identify a set of 9 distinct point mutations affecting codon 61 of the NRAS oncogene. In parallel, a pyrosequencing assay using the Qiagen software and its AQ module was used to assess selectively the presence of a single point mutation (NRAS $$c.182A>G$$ - Q61R-1) among the set of codon 61 mutations, and to analyze related pyrosequencing signals. AdvISER-PYRO-SMQ produced a lower limit of blank (0 %) than the AQ module of Qiagen software (5.1 %) and similar limit of detection were obtained for both software (5.6 vs 4.8 %). AdvISER-PYRO-SMQ was able to screen for the presence of 9 distinct mutations with a single pyrosequencing reaction whereas the AQ module was limited to screen a single mutation per reaction. Using a constraint-based regression method enables to analyze pyrosequencing signal and to detect multiple mutations within a hotspot genomic region with an optimal compromise between sensitivity and specificity. The AdvISER-PYRO-SMQ R package provides a generic tool which can be applied on a wide range of somatic mutations. Its implementation in a Shiny web interactive application (available at https://ucl-irec-ctma.shinyapps.io/Pyrosequencing-NRAS-61/ ) enables its use in research or clinical routine applications.

Tài liệu tham khảo

Ronaghi M. Pyrosequencing sheds light on dna sequencing. Genome Res. 2001;11(1):3–11. Shen S, Qin D. Pyrosequencing data analysis software: a useful tool for egfr, kras, and braf mutation analysis. Diagn Pathol. 2012;7:56. Skorokhod A, Helmbold P, Brors B, Schirmacher P, Enk A, Penzel R. Automated universal braf state detection within the activation segment in skin metastases by pyrosequencing-based assay u-brafv600. PloS One. 2013;8(3):59221. Dufort S, Richard M-J, de Fraipont F. Pyrosequencing method to detect kras mutation in formalin-fixed and paraffin-embedded tumor tissues. Anal Biochem. 2009;391(2):166–8. Ihle MA, Fassunke J, König K, Grünewald I, Schlaak M, Kreuzberg N, Tietze L, Schildhaus H-U, Büttner R, Merkelbach-Bruse S. Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional sanger sequencing for the detection of p. v600e and non-p. v600e braf mutations. BMC Cancer. 2014;14(1):13. Cao H, Duan J, Lin D, Shugart YY, Calhoun V, Wang Y-P. Sparse representation based biomarker selection for schizophrenia with integrated analysis of fmri and snps. Neuroimage. 2014;102:220–8. Hang X, Wu FX. Sparse representation for classification of tumors using gene expression data. J Biomed Res. 2009;2009:403689. doi:10.1155/2009/403689. Tang W, Duan J, Zhang J-G, Wang Y-P. Subtyping glioblastoma by combining mirna and mrna expression data using compressed sensing-based approach. EURASIP J Bioinform Syst Biol. 2013;2013(2):1–9. Ambroise J, Piette A-S, Delcorps C, Rigouts L, de Jong BC, Irenge L, Robert A, Gala J-L. Adviser-pyro: amplicon identification using sparse representation of pyrosequencing signal. Bioinformatics. 2013;29(16):1963–9. Ambroise J, Deccache Y, Irenge L, Savov E, Robert A, Gala J-L. Amplicon identification using sparse representation of multiplex pyrosequencing signal (adviser-m-pyro): application to bacterial resistance genotyping. Bioinformatics. 2014;30(24):3590–7. Ambroise J, Butoescu V, Robert A, Tombal B, Gala JL. Multiplex pyrosequencing assay using adviser-mh-pyro algorithm : a case for rapid and cost-effective genotyping analysis of prostate cancer risk-associated snps. BMC Med Genet. 2015;16:42. Jakob JA, Bassett RL, Ng CS, Curry JL, Joseph RW, Alvarado GC, Rohlfs ML, Richard J, Gershenwald JE, Kim KB. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23. Schirripa M, Cremolini C, Loupakis F, Morvillo M, Bergamo F, Zoratto F, Salvatore L, Antoniotti C, Marmorino F, Sensi E. Role of nras mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer. 2015;136(1):83–90. Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):49. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B (Methodological), 1996, 267–88 Tibshirani RJ. Lasso and sparsity in statistics. Statistics in action: a Canadian Outlook. 2014, 79 Goeman J, Meijer R, Chaturvedi N. Penalized: L1 (lasso and fused lasso) and l2 (ridge) penalized estimation in glms and in the cox model. 2012. http://cran.r-project.org/web/packages/penalized/index.html. Accessed 22 Aug 2016. Goeman JJ. L1 penalized estimation in the cox proportional hazards model. Biom J. 2010;52(1):70–84.