Using PLS path modeling in new technology research: updated guidelines
Tóm tắt
– Partial least squares (PLS) path modeling is a variance-based structural equation modeling (SEM) technique that is widely applied in business and social sciences. Its ability to model composites and factors makes it a formidable statistical tool for new technology research. Recent reviews, discussions, and developments have led to substantial changes in the understanding and use of PLS. The paper aims to discuss these issues.
– This paper aggregates new insights and offers a fresh look at PLS path modeling. It presents new developments, such as consistent PLS, confirmatory composite analysis, and the heterotrait-monotrait ratio of correlations.
– PLS path modeling is the method of choice if a SEM contains both factors and composites. Novel tests of exact fit make a confirmatory use of PLS path modeling possible.
– This paper provides updated guidelines of how to use PLS and how to report and interpret its results.
Từ khóa
Tài liệu tham khảo
Aguirre-Urreta, M. and Rönkkö, M. (2015), “Sample size determination and statistical power analysis in PLS using R: an annotated tutorial”, Communications of the Association for Information Systems , Vol. 36 No. 3, pp. 33-51.
Aguirre-Urreta, M.I. and Marakas, G.M. (2013), “Research note – partial least squares and models with formatively specified endogenous constructs: a cautionary note”, Information Systems Research , Vol. 25 No. 4, pp. 761-778.
Albers, S. (2010), “PLS and success factor studies in marketing”, in Esposito Vinzi, V. , Chin, W.W. , Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares , Springer, Berlin, pp. 409-425.
Antonakis, J. , Bendahan, S. , Jacquart, P. and Lalive, R. (2010), “On making causal claims: a review and recommendations”, The Leadership Quarterly , Vol. 21 No. 6, pp. 1086-1120.
Becker, J.-M. , Rai, A. and Rigdon, E.E. (2013a), “Predictive validity and formative measurement in structural equation modeling: embracing practical relevance”, International Conference on Information Systems, Milan, December 15-18.
Becker, J.-M. , Rai, A. , Ringle, C.M. and Völckner, F. (2013b), “Discovering unobserved heterogeneity in structural equation models to avert validity threats”, MIS Quarterly , Vol. 37 No. 3, pp. 665-694.
Bentler, P.M. and Bonett, D.G. (1980), “Significance tests and goodness of fit in the analysis of covariance structures”, Psychological Bulletin , Vol. 88 No. 3, pp. 588-606.
Bentler, P.M. and Huang, W. (2014), “On components, latent variables, PLS and simple methods: reactions to Rigdon’s rethinking of PLS”, Long Range Planning , Vol. 47 No. 3, pp. 138-145.
Bollen, K.A. and Stine, R.A. (1992), “Bootstrapping goodness-of-fit measures in structural equation models”, Sociological Methods & Research , Vol. 21 No. 2, pp. 205-229.
Braojos-Gomez, J. , Benitez-Amado, J. and Llorens-Montes, F.J. (2015), “How do small firms learn to develop a social media competence?”, International Journal of Information Management , Vol. 35 No. 4, pp. 443-458.
Buckler, F. and Hennig-Thurau, T. (2008), “Identifying hidden structures in marketing’s structural models through universal structure modeling: an explorative Bayesian neural network complement to LISREL and PLS”, Marketing-Journal of Research and Management , Vol. 4 No. 2, pp. 47-66.
Byrne, B.M. (2008), Structural Equation Modeling with EQS: Basic Concepts, Applications, and Programming , Psychology Press, New York, NY.
Chen, Y. , Wang, Y. , Nevo, S. , Benitez-Amado, J. and Kou, G. (2015), “IT capabilities and product innovation performance: the roles of corporate entrepreneurship and competitive intensity”, Information & Management , Vol. 52 No. 6, pp. 643-657.
Chin, W.W. (2010), “Bootstrap cross-validation indices for PLS path model assessment”, in Esposito Vinzi, V. , Chin, W.W. , Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts, Methods and Applications , Springer, Heidelberg, Dordrecht, London and New York, NY, pp. 83-97.
Cohen, J. (1988), Statistical Power Analysis for the Behavioral Sciences , Lawrence Erlbaum, Mahwah, NJ.
Cohen, J. (1994), “The earth is round (p < 0.05)”, American Psychologist , Vol. 49 No. 12, pp. 997-1003.
Diamantopoulos, A. , Sarstedt, M. , Fuchs, C. , Wilczynski, P. and Kaiser, S. (2012), “Guidelines for choosing between multi-item and single-item scales for construct measurement: a predictive validity perspective”, Journal of the Academy of Marketing Science , Vol. 40 No. 3, pp. 434-449.
Dijkstra, T.K. (2010), “Latent variables and indices: Herman Wold’s basic design and partial least squares”, in Esposito Vinzi, V. , Chin, W.W. , Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts, Methods and Applications , Springer, Heidelberg, Dordrecht, London and New York, NY, pp. 23-46.
Dijkstra, T.K. and Henseler, J. (2011), “Linear indices in nonlinear structural equation models: best fitting proper indices and other composites”, Quality & Quantity , Vol. 45 No. 6, pp. 1505-1518.
Dijkstra, T.K. and Henseler, J. (2014), “Assessing and testing the goodness-of-fit of PLS path models”, 3rd VOC Conference, Leiden, May 9.
Dijkstra, T.K. and Henseler, J. (2015a), “Consistent and asymptotically normal PLS estimators for linear structural equations”, Computational Statistics & Data Analysis , Vol. 81 No. 1, pp. 10-23.
Dijkstra, T.K. and Henseler, J. (2015b), “Consistent partial least squares path modeling”, MIS Quarterly , Vol. 39 No. 2, pp. 297-316.
Dijkstra, T.K. and Schermelleh-Engel, K. (2014), “Consistent partial least squares for nonlinear structural equation models”, Psychometrika , Vol. 79 No. 4, pp. 585-604.
Esposito Vinzi, V. , Trinchera, L. and Amato, S. (2010), “PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement”, in Esposito Vinzi, V. , Chin, W.W. , Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts, Methods and Applications , Springer, Berlin, pp. 47-82.
Fornell, C. and Larcker, D.F. (1981), “Evaluating structural equation models with unobservable variables and measurement error”, Journal of Marketing Research , Vol. 18 No. 1, pp. 39-50.
French, B.F. and Finch, W.H. (2006), “Confirmatory factor analytic procedures for the determination of measurement invariance”, Structural Equation Modeling , Vol. 13 No. 3, pp. 378-402.
Goodhue, D.L. , Lewis, W. and Thompson, R.L. (2011), “A dangerous blind spot in IS research: false positives due to multicollinearity combined with measurement error”, AMCIS 2011, Detroit, MI, August 4-8.
Hair, J.F. , Ringle, C.M. and Sarstedt, M. (2011), “PLS-SEM: indeed a silver bullet”, Journal of Marketing Theory and Practice , Vol. 18 No. 2, pp. 139-152.
Hair, J.F. , Sarstedt, M. , Pieper, T.M. and Ringle, C.M. (2012a), “The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications”, Long Range Planning , Vol. 45 Nos 5/6, pp. 320-340.
Hair, J.F. , Sarstedt, M. , Ringle, C.M. and Mena, J.A. (2012b), “An assessment of the use of partial least squares structural equation modeling in marketing research”, Journal of the Academy of Marketing Science , Vol. 40 No. 3, pp. 414-433.
Henseler, J. (2010), “On the convergence of the partial least squares path modeling algorithm”, Computational Statistics , Vol. 25 No. 1, pp. 107-120.
Henseler, J. (2012), “Why generalized structured component analysis is not universally preferable to structural equation modeling”, Journal of the Academy of Marketing Science , Vol. 40 No. 3, pp. 402-413.
Henseler, J. (2015), “Is the whole more than the sum of its parts? On the interplay of marketing and design research”, Inaugural lecture held on 30 April 2015, University of Twente, Enschede.
Henseler, J. and Chin, W.W. (2010), “A comparison of approaches for the analysis of interaction effects between latent variables using partial least squares path modeling”, Structural Equation Modeling , Vol. 17 No. 1, pp. 82-109.
Henseler, J. and Dijkstra, T.K. (2015), “ADANCO 2.0”, Composite Modeling, Kleve, available at: www.compositemodeling.com (accessed December 14, 2015).
Henseler, J. and Fassott, G. (2010), “Testing moderating effects in PLS path models: an illustration of available procedures”, in Esposito Vinzi, V. , Chin, W.W. , Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts, Methods and Applications , Springer, Berlin, pp. 713-735.
Henseler, J. and Sarstedt, M. (2013), “Goodness-of-fit indices for partial least squares path modeling”, Computational Statistics , Vol. 28 No. 2, pp. 565-580.
Henseler, J. , Ringle, C.M. and Sarstedt, M. (2015), “A new criterion for assessing discriminant validity in variance-based structural equation modeling”, Journal of the Academy of Marketing Science , Vol. 43 No. 1, pp. 115-135.
Henseler, J. , Ringle, C.M. and Sarstedt, M. (forthcoming), “Testing measurement invariance of composites using partial least squares”, International Marketing Review (in print).
Henseler, J. , Fassott, G. , Dijkstra, T.K. and Wilson, B. (2012), “Analysing quadratic effects of formative constructs by means of variance-based structural equation modelling”, European Journal of Information Systems , Vol. 21 No. 1, pp. 99-112.
Henseler, J. , Dijkstra, T.K. , Sarstedt, M. , Ringle, C.M. , Diamantopoulos, A. , Straub, D.W. , Ketchen, D.J. Jr , Hair, J.F. , Hult, G.T.M. and Calantone, R.J. (2014), “Common beliefs and reality about PLS: comments on Rönkkö & Evermann (2013)”, Organizational Research Methods , Vol. 17 No. 2, pp. 182-209.
Höök, K. and Löwgren, J. (2012), “Strong concepts: intermediate-level knowledge in interaction design research”, ACM Transactions on Computer-Human Interaction (TOCHI) , Vol. 19 No. 3, Article 23.
Hu, L. and Bentler, P.M. (1998), “Fit indices in covariance structure modeling: sensitivity to underparameterized model misspecification”, Psychological Methods , Vol. 3 No. 4, pp. 424-453.
Hu, L.-T. and Bentler, P.M. (1999), “Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives”, Structural Equation Modeling , Vol. 6 No. 1, pp. 1-55.
Hwang, H. and Takane, Y. (2004), “Generalized structured component analysis”, Psychometrika , Vol. 69 No. 1, pp. 81-99.
Kettenring, J.R. (1971), “Canonical analysis of several sets of variables”, Biometrika , Vol. 58 No. 3, pp. 433-451.
Ketterlinus, R.D. , Bookstein, F.L. , Sampson, P.D. and Lamb, M.E. (1989), “Partial least squares analysis in developmental psychopathology”, Development and Psychopathology , Vol. 1 No. 2, pp. 351-371.
Krijnen, W.P. , Dijkstra, T.K. and Gill, R.D. (1998), “Conditions for factor (in)determinacy in factor analysis”, Psychometrika , Vol. 63 No. 4, pp. 359-367.
Landis, R.S. , Beal, D.J. and Tesluk, P.E. (2000), “A comparison of approaches to forming composite measures in structural equation models”, Organizational Research Methods , Vol. 3 No. 2, pp. 186-207.
Lohmöller, J.-B. (1989), Latent Variable Path Modeling with Partial Least Squares , Physica, Heidelberg.
McDonald, R.P. (1996), “Path analysis with composite variables”, Multivariate Behavioral Research , Vol. 31 No. 2, pp. 239-270.
McDonald, R.P. (1999), Test Theory: A Unified Treatment , Lawrence Erlbaum, Mahwah, NJ.
Maraun, M.D. and Halpin, P.F. (2008), “Manifest and latent variates”, Measurement: Interdisciplinary Research and Perspectives , Vol. 6 Nos 1/2, pp. 113-117.
Marcoulides, G.A. and Saunders, C. (2006), “PLS: a silver bullet?”, MIS Quarterly , Vol. 30 No. 2, pp. iii-ix.
Nunnally, J.C. and Bernstein, I.H. (1994), Psychometric Theory , McGraw-Hill, New York, NY.
Reinartz, W.J. , Haenlein, M. and Henseler, J. (2009), “An empirical comparison of the efficacy of covariance-based and variance-based SEM”, International Journal of Research in Marketing , Vol. 26 No. 4, pp. 332-344.
Rigdon, E.E. (2012), “Rethinking partial least squares path modeling: in praise of simple methods”, Long Range Planning , Vol. 45 Nos 5/6, pp. 341-358.
Rigdon, E.E. (2014), “Rethinking partial least squares path modeling: breaking chains and forging ahead”, Long Range Planning , Vol. 47 No. 3, pp. 161-167.
Rigdon, E.E. , Becker, J.-M. , Rai, A. , Ringle, C.M. , Diamantopoulos, A. , Karahanna, E. , Straub, D.W. and Dijkstra, T.K. (2014), “Conflating antecedents and formative indicators: a comment on Aguirre-Urreta and Marakas”, Information Systems Research , Vol. 25 No. 4, pp. 780-784.
Rindskopf, D. (1984), “Using phantom and imaginary latent variables to parameterize constraints in linear structural models”, Psychometrika , Vol. 49 No. 1, pp. 37-47.
Ringle, C.M. , Sarstedt, M. and Mooi, E.A. (2010a), “Response-based segmentation using finite mixture partial least squares: theoretical foundations and an application to American Customer Satisfaction Index data”, Annals of Information Systems , Vol. 8 No. 1, pp. 19-49.
Ringle, C.M. , Sarstedt, M. and Schlittgen, R. (2010b), “Finite mixture and genetic algorithm segmentation in partial least squares path modeling: identification of multiple segments in a complex path model”, in Fink, A. , Lausen, B. , Seidel, W. and Ultsch, A. (Eds), Advances in Data Analysis, Data Handling and Business Intelligence , Springer, Berlin and Heidelberg, pp. 167-176.
Ringle, C.M. , Sarstedt, M. and Schlittgen, R. (2014), “Genetic algorithm segmentation in partial least squares structural equation modeling”, OR Spectrum , Vol. 36 No. 1, pp. 251-276.
Ringle, C.M. , Sarstedt, M. and Straub, D.W. (2012), “Editor’s comments: a critical look at the use of PLS-SEM in MIS Quarterly”, MIS Quarterly , Vol. 36 No. 1, pp. iii-xiv.
Ringle, C.M. , Wende, S. and Will, A. (2010c), “Finite mixture partial least squares analysis: methodology and numerical examples”, in Esposito Vinzi, V. , Chin, W.W. , Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts, Methods and Applications , Springer, Berlin, pp. 195-218.
Rönkkö, M. and Evermann, J. (2013), “A critical examination of common beliefs about partial least squares path modeling”, Organizational Research Methods , Vol. 16 No. 3, pp. 425-448.
Sahmer, K. , Hanafi, M. and Qannari, M. (2006), “Assessing unidimensionality within the PLS path modeling framework”, in Spiliopoulou, M. , Kruse, R. , Borgelt, C. , Nürnberger, A. and Gaul, W. (Eds), From Data and Information Analysis to Knowledge Engineering , Springer, Berlin, pp. 222-229.
Sarstedt, M. , Henseler, J. and Ringle, C. (2011), “Multi-group analysis in partial least squares (PLS) path modeling: alternative methods and empirical results”, Advances in International Marketing , Vol. 22 No. 1, pp. 195-218.
Sarstedt, M. , Ringle, C.M. , Henseler, J. and Hair, J.F. (2014), “On the emancipation of PLS-SEM: a commentary on Rigdon (2012)”, Long Range Planning , Vol. 47 No. 3, pp. 154-160.
Shmueli, G. and Koppius, O.R. (2013), “Predictive analytics in information systems research”, MIS Quarterly , Vol. 35 No. 3, pp. 553-572.
Sijtsma, K. (2009), “On the use, the misuse, and the very limited usefulness of Cronbach’s alpha”, Psychometrika , Vol. 74 No. 1, pp. 107-120.
Streukens, S. , Wetzels, M. , Daryanto, A. and de Ruyter, K (2010), “Analyzing factorial data using PLS: application in an online complaining context”, in Esposito Vinzi, V. , Chin, W.W. , Henseler, J. and Wang, H. (Eds), Handbook of Partial Least Squares: Concepts, Methods and Applications , Springer, Heidelberg, Dordrecht, London and New York, NY, pp. 567-587.
Tenenhaus, A. and Tenenhaus, M. (2011), “Regularized generalized canonical correlation analysis”, Psychometrika , Vol. 76 No. 2, pp. 257-284.
Tenenhaus, M. (2008), “Component-based structural equation modelling”, Total Quality Management & Business Excellence , Vol. 19 No. 7, pp. 871-886.
Tenenhaus, M. , Amato, S. and Esposito Vinzi, V. (2004), “A global goodness-of-fit index for PLS structural equation modelling”, Proceedings of the XLII SIS Scientific Meeting, CLEUP, Padova , pp. 739-742.
Tenenhaus, M. , Esposito Vinzi, V. , Chatelin, Y.-M. and Lauro, C. (2005), “PLS path modeling”, Computational Statistics & Data Analysis , Vol. 48 No. 1, pp. 159-205.
Turkyilmaz, A. , Oztekin, A. , Zaim, S. and Fahrettin Demirel, O. (2013), “Universal structure modeling approach to customer satisfaction index”, Industrial Management & Data Systems , Vol. 113 No. 7, pp. 932-949.
Voorhees, C.M. , Brady, M.K. , Calantone, R. and Ramirez, E. (forthcoming), “Discriminant validity testing in marketing: an analysis, causes for concern, and proposed remedies”, Journal of the Academy of Marketing Science (in print).
Wold, H.O.A. (1974), “Causal flows with latent variables: partings of the ways in the light of NIPALS modelling”, European Economic Review , Vol. 5 No. 1, pp. 67-86.
Wold, H.O.A. (1982), “Soft modeling: the basic design and some extensions”, in Jöreskog, K.G. and Wold, H.O.A. (Eds), Systems Under Indirect Observation , North-Holland, Amsterdam, pp. 1-54.
Zhao, X. , Lynch, J.G. and Chen, Q. (2010), “Reconsidering Baron and Kenny: myths and truths about mediation analysis”, Journal of Consumer Research , Vol. 37 No. 2, pp. 197-206.
Ziggers, G.-W. and Henseler, J. (forthcoming), “The reinforcing effect of a firm’s customer orientation and supply-base orientation on performance”, Industrial Marketing Management (in print).