Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method
Tóm tắt
Personal exposure studies of air pollution generally use self-reported diaries to capture individuals’ time-activity data. Enhancements in the accuracy, size, memory and battery life of personal Global Positioning Systems (GPS) units have allowed for higher resolution tracking of study participants’ locations. Improved time-activity classifications combined with personal continuous air pollution sampling can improve assessments of location-related air pollution exposures for health studies. Data was collected using a GPS and personal temperature from 54 children with asthma living in Montreal, Canada, who participated in a 10-day personal air pollution exposure study. A method was developed that incorporated personal temperature data and then matched a participant’s position against available spatial data (i.e., road networks) to generate time-activity categories. The diary-based and GPS-generated time-activity categories were compared and combined with continuous personal PM2.5 data to assess the impact of exposure misclassification when using diary-based methods. There was good agreement between the automated method and the diary method; however, the automated method (means: outdoors = 5.1%, indoors other =9.8%) estimated less time spent in some locations compared to the diary method (outdoors = 6.7%, indoors other = 14.4%). Agreement statistics (AC1 = 0.778) suggest ‘good’ agreement between methods over all location categories. However, location categories (Outdoors and Transit) where less time is spent show greater disagreement: e.g., mean time “Indoors Other” using the time-activity diary was 14.4% compared to 9.8% using the automated method. While mean daily time “In Transit” was relatively consistent between the methods, the mean daily exposure to PM2.5 while “In Transit” was 15.9 μg/m3 using the automated method compared to 6.8 μg/m3 using the daily diary. Mean times spent in different locations as categorized by a GPS-based method were comparable to those from a time-activity diary, but there were differences in estimates of exposure to PM2.5 from the two methods. An automated GPS-based time-activity method will reduce participant burden, potentially providing more accurate and unbiased assessments of location. Combined with continuous air measurements, the higher resolution GPS data could present a different and more accurate picture of personal exposures to air pollution.
Tài liệu tham khảo
Henderson SB, Beckerman B, Jerrett M, Brauer M: Application of land Use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ Sci Technol. 2007, 41: 2422-2428. 10.1021/es0606780.
Allen RW, Wallace L, Larson T, Sheppard L, Liu LJS: Estimated hourly personal exposures to ambient and nonambient particulate matter among sensitive populations in Seattle, Washington. J Air Waste Manage Assoc. 2004, 54: 1197-1211. 10.1080/10473289.2004.10470988.
Howard-Reed C, Rea AW, Zufall MJ, Burke JM, Williams RW, Suggs JC, Sheldon LS, Walsh D, Kwok R: Use of a continuous nephelometer to measure personal exposure to particles during the U.S. Environmental protection agency Baltimore and Fresno panel studies. J Air Waste Manage Assoc. 2000, 50: 1125-1132. 10.1080/10473289.2000.10464150.
Wu C-F, Delfino RJ, Floro JN, Quintana PJE, Samimi BS, Kleinman MT, Allen RW, Sally Liu L-J: Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers. Atmos Environ. 2005, 39: 3457-3469. 10.1016/j.atmosenv.2005.01.061.
Williams R, Suggs J, Rea AW, Sheldon L, Rodes C, Thornburg J: The Research Triangle Park particulate matter panel study: modeling ambient source contribution to personal and residential PM mass concentrations. Atmos Environ. 2003, 37: 5365-5378. 10.1016/j.atmosenv.2003.09.010.
Van Ryswyk K, Wheeler AJ, Wallace L, Kearney J, You H, Kulka R, Xu X: Impact of microenvironments and personal activities on personal PM2.5 exposures among asthmatic children. J Expo Sci Environ Epidemiol. 2013, 24: 260-
Elgethun K, Yost MG, Fitzpatrick CTE, Nyerges TL, Fenske RA: Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children’s time-location patterns. J Expo Sci Environ Epidemiol. 2007, 17: 196-206. 10.1038/sj.jes.7500496.
Vazquez-Prokopec GM, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, Kochel TJ, Scott TW, Kitron U: Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. Int J Health Geogr. 2009, 8: 68-10.1186/1476-072X-8-68.
Cho G-H, Rodríguez DA, Evenson KR: Identifying walking trips using GPS data. Med Sci Sports Exerc. 2011, 43: 365-372.
Nethery E, Brauer M, Janssen P: Time–activity patterns of pregnant women and changes during the course of pregnancy. J Expo Sci Environ Epidemiol. 2009, 19: 319-
Mavoa S, Oliver M, Witten K, Badland HM: Linking GPS and travel diary data using sequence alignment in a study of children’s independent mobility. Int J Health Geogr. 2011, 10: 64-10.1186/1476-072X-10-64.
Wu J, Jiang C, Jaimes G, Bartell S, Dang A, Baker D, Delfino RJ: Travel patterns during pregnancy: comparison between Global Positioning System (GPS) tracking and questionnaire data. Environ Heal. 2013, 12: 86-10.1186/1476-069X-12-86.
Rodríguez D, Cho G-H, Evenson KR, Conway TL, Cohen D, Ghosh-Dastidar B, Pickrel JL, Veblen-Mortenson S, Lytle LA: Out and about: association of the built environment with physical activity behaviors of adolescent females. Health Place. 2012, 18: 55-62. 10.1016/j.healthplace.2011.08.020.
Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL: Spatial classification of youth physical activity patterns. Am J Prev Med. 2012, 42: e87-e96. 10.1016/j.amepre.2012.02.011.
Steinle S, Reis S, Sabel CE: Quantifying human exposure to air pollution-Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ. 2012, 443C (null): 184-193.
Briggs D: The role of gis: coping with space (and time) in air pollution exposure assessment. J Toxicol Environ Heal Part A. 2005, 68: 1243-1261. 10.1080/15287390590936094.
Adams C, Riggs P, Volckens J: Development of a method for personal, spatiotemporal exposure assessment. J Environ Monit. 2009, 11: 1331-1339. 10.1039/b903841h.
Gerharz LE, Krüger A, Klemm O: Applying indoor and outdoor modeling techniques to estimate individual exposure to PM2.5 from personal GPS profiles and diaries: a pilot study. Sci Total Environ. 2009, 407: 5184-5193. 10.1016/j.scitotenv.2009.06.006.
Phillips ML, Hall TA, Esmen NA, Lynch R, Johnson DL: Use of global positioning system technology to track subject’s location during environmental exposure sampling. J Expo Anal Environ Epidemiol. 2001, 11: 207-215. 10.1038/sj.jea.7500161.
De Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, Jerrett M: Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut. 2013, 176C: 92-99.
Rainham D, Krewski D, McDowell I, Sawada M, Liekens B: Development of a wearable global positioning system for place and health research. Int J Health Geogr. 2008, 7: 59-10.1186/1476-072X-7-59.
Gwet KL: Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol. 2008, 61 (Pt 1): 29-48.
Gwet KL: Inter-Rater Reliability Using SAS: A Practical Guide for Nominal, Ordinal and Interval Data. 2010, Advanced Analytics, LLC: Gaithersburg, MD
Kelly P, Krenn P, Titze S, Stopher P, Foster C: Quantifying the difference between self-reported and global positioning systems-measured journey durations: a systematic review. Transp Rev. 2013, 33: 443-459. 10.1080/01441647.2013.815288.
Wu J, Jiang C, Houston D, Baker D, Delfino R: Automated time activity classification based on global positioning system (GPS) tracking data. Environ Health. 2011, 10: 101-10.1186/1476-069X-10-101.
Kim T, Lee K, Yang W, Yu SD: A new analytical method for the classification of time-location data obtained from the global positioning system (GPS). J Environ Monit. 2012, 14: 2270-2274. 10.1039/c2em30190c.
Tandon PS, Saelens BE, Zhou C, Kerr J, Christakis DA: Indoor versus outdoor time in preschoolers at child care. Am J Prev Med. 2013, 44: 85-88. 10.1016/j.amepre.2012.09.052.
Blanchard RA, Myers AM, Porter MM: Correspondence between self-reported and objective measures of driving exposure and patterns in older drivers. Accid Anal Prev. 2010, 42: 523-529. 10.1016/j.aap.2009.09.018.
Kochan B, Bellemans T, Janssens D, Wets G, Timmermans HJP: Quality assessment of location data obtained by the GPS-enabled PARROTS survey tool. J Locat Based Serv. 2010, 4: 93-104. 10.1080/17489725.2010.506662.
Ebelt ST, Wilson WE, Brauer M: Exposure to ambient and nonambient components of particulate matter. Epidemiology. 2005, 16: 396-405. 10.1097/01.ede.0000158918.57071.3e.
Meng Q, Turpin B: PM2. 5 of ambient origin: Estimates and exposure errors relevant to PM epidemiology. Environ. 2005, 39: 5105-5112.
Strand M, Hopke PK, Zhao W, Vedal S, Gelfand E, Rabinovitch N: A study of health effect estimates using competing methods to model personal exposures to ambient PM2.5. J Expo Sci Environ Epidemiol. 2007, 17: 549-558. 10.1038/sj.jes.7500568.
Wilson WE, Brauer M: Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. J Expo Sci Environ Epidemiol. 2006, 16: 264-274. 10.1038/sj.jes.7500483.