User journey games: automating user-centric analysis

Paul Kobialka, Silvia Lizeth Tapia Tarifa, Gunnar R. Bergersen, Einar Broch Johnsen

Tóm tắt

AbstractThe servitization of business is moving industry to business models driven by customer demand. Customer satisfaction is connected with financial rewards, forcing companies to invest in their users’ experience. User journeys describe how users maneuver through a service. Today, user journeys are typically modeled graphically, and lack formalization and analysis support. This paper proposes a formalization of user journeys as weighted games between the user and the service provider and a systematic data-driven method to derive these user journey games from system logs, using process mining techniques. As the derived games may contain cycles, we define an algorithm to transform user journeys games with cycles into acyclic weighted games, which can be model checked using "Image missing" to uncover potential challenges in a company’s interactions with its users and derive company strategies to guide users through their journeys. Finally, we propose a user journey sliding-window analysis to detect changes in the user journey over time by model checking a sequence of generated games. Our analysis pipeline has been evaluated on an industrial case study; it revealed design challenges within the studied service and could be used to derive actionable recommendations for improvement.

Từ khóa


Tài liệu tham khảo

Eckerson, W.W.: Performance Dashboards: Measuring, Monitoring, and Managing Your Business. Wiley, Hoboken (2010)

Halvorsrud, R., Mannhardt, F., Johnsen, E. B., Tapia Tarifa, S.L.: Smart journey mining for improved service quality. In: Proc. IEEE International Conference on Services Computing (SCC 2021), pp. 367–369. IEEE (2021). https://doi.org/10.1109/SCC53864.2021.00051

Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011). https://doi.org/10.1145/1995376.1995396

Vandermerwe, S., Rada, J.: Servitization of business: adding value by adding services. Eur. Manag. J. 6(4), 314–324 (1988). https://doi.org/10.1016/0263-2373(88)90033-3

Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and stock prices: High returns, low risk. J. Mark. 70(1), 3–14 (2006). https://doi.org/10.1509/jmkg.70.1.003.qxd

Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic customer journey map. Bus. Horiz. 60(1), 143–150 (2017). https://doi.org/10.1016/j.bushor.2016.09.010

Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer journey analysis. J. Serv. Theory Pract. 26(6), 840–867 (2016). https://doi.org/10.1108/JSTP-05-2015-0111

Bose, R.J.C., van der Aalst, W.M., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2013). https://doi.org/10.1109/TNNLS.2013.2278313

Bouyer, P., Cassez, F., Fleury, E., Larsen, K. G.: Optimal strategies in priced timed game automata. In: Proc. 24th Intl. Conf. on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2004). Lecture Notes in Computer Science 3328, pp. 148–160. Springer (2004). https://doi.org/10.1007/978-3-540-30538-5_13

David, A., Jensen, P. G., Larsen, K. G., Mikučionis, M., Taankvist, J. H.: Uppaal Stratego. In: Proc. 21st Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2015). Lecture Notes in Computer Science 9035, pp. 206–211. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_16

Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a model checker for stochastic multi-player games. In: Proc. Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science 7795, pp. 185–191. Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_13

Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games for user journeys. In: Proc. 20th Intl. Conf. Software Engineering and Formal Methods (SEFM 2022). Lecture Notes in Computer Science 13550, pp. 253–270. Springer (2022). https://doi.org/10.1007/978-3-031-17108-6_16

Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical technique for service innovation. Calif. Manage. Rev. 50(3), 66–94 (2008). https://doi.org/10.2307/41166446

Halvorsrud, R., Haugstveit, I. M., Pultier, A.: Evaluation of a modelling language for customer journeys. In: Proc. Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2016), pp. 40–48. IEEE Computer Society (2016). https://doi.org/10.1109/VLHCC.2016.7739662

Lammel, B., Korkut, S., Hinkelmann, K.: Customer experience modelling and analysis framework a semantic lifting approach for analyzing customer experience. In: Proc. 6th Intl. Conf. on Innovation and Entrepreneurship (IE 2016). GSTF (2016)

Berendes, C. I., Bartelheimer, C., Betzing, J. H., Beverungen, D.: Data-driven customer journey mapping in local high streets: a domain-specific modeling language. In: Proc. Intl. Conf. on Information Systems ICIS 2018. Association for Information Systems (2018)

Razo-Zapata, I.S., Chew, E.K., Proper, E.: VIVA: A visual language to design value co-creation. In: 20th Conf. on Business Informatics (CBI), pp. 20–29. IEEE (2018). https://doi.org/10.1109/CBI.2018.00012

Crosier, A., Handford, A.: Customer journey mapping as an advocacy tool for disabled people: a case study. Soc. Mark. Q. 18(1), 67–76 (2012). https://doi.org/10.1177/1524500411435483

van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4

Harbich, M., Bernard, G., Berkes, P., Garbinato, B., Andritsos, P.: Discovering customer journey maps using a mixture of markov models. In: Proc. 7th Intl. Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2017). CEUR Workshop Proceedings 2016, pp. 3–7. CEUR-WS.org (2017), http://ceur-ws.org/Vol-2016/paper1.pdf

Bernard, G., Andritsos, P.: Contextual and behavioral customer journey discovery using a genetic approach. In: Proc. 23rd European Conference on Advances in Databases and Information Systems (ADBIS 2019). Lecture Notes in Computer Science 11695, pp. 251–266. Springer (2019). https://doi.org/10.1007/978-3-030-28730-6_16

Bernard, G., Andritsos, P.: A process mining based model for customer journey mapping. In: Proc. CAiSE Forum 2017 CEUR Workshop Proceedings 1848, pp. 49–56. CEUR-WS.org (2017)

Bernard, G., Andritsos, P.: CJM-ex: Goal-oriented exploration of customer journey maps using event logs and data analytics. In: Proc. BPM Demo Track and BPM Dissertation Award CEUR Workshop Proceedings 1920. CEUR-WS.org (2017)

Bernard, G., Andritsos, P.: CJM-ab: Abstracting customer journey maps using process mining. In: Information Systems in the Big Data Era - Proc. CAiSE Forum 2018. Lecture Notes in Business Information Processing 317, pp. 49–56. Springer (2018). https://doi.org/10.1007/978-3-319-92901-9_5

Terragni, A., Hassani, M.: Analyzing customer journey with process mining: From discovery to recommendations. In: Proc. 6th intl. conf. on future internet of things and cloud (FiCloud 2018), pp. 224–229. IEEE (2018). https://doi.org/10.1109/FiCloud.2018.00040

Terragni, A., Hassani, M.: Optimizing customer journey using process mining and sequence-aware recommendation. In: Proc. 34th symposium on applied computing (SAC 2019), pp. 57–65. ACM Press (2019). https://doi.org/10.1145/3297280.3297288

David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K., Møller, M., Srba, J.: TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In: Proc. 18th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2012). Lecture Notes in Computer Science 7214, pp. 492–497. Springer (2012). https://doi.org/10.1007/978-3-642-28756-5_36

Bertolini, C., Liu, Z., Srba, J.: Verification of timed healthcare workflows using component timed-arc petri nets. In: Foundations of Health Information Engineering and Systems: (FHIES 2012). Lecture Notes in Computer Science 7789, pp. 19–36. Springer (2013). https://doi.org/10.1007/978-3-642-39088-3_2

Sato, D.M.V., De Freitas, S.C., Barddal, J.P., Scalabrin, E.E.: A survey on concept drift in process mining. ACM Comput. Surv. 54(9), 1–38 (2021)

Banham, A., Leemans, S. J., Wynn, M. T., Andrews, R.: xPM: a framework for process mining with exogenous data. In: Process Mining Workshops: ICPM 2021, pp. 85–97. Springer (2022)

Banham, A., Leemans, S.J., Wynn, M.T., Andrews, R., Laupland, K.B., Shinners, L.: xPM: Enhancing exogenous data visibility. Artif. Intell. Med. 133, 102409 (2022). https://doi.org/10.1016/j.artmed.2022.102409

Følstad, A., Kvale, K.: Customer journeys: a systematic literature review. J. Serv. Theory Pract. 28(2), 196–227 (2018). https://doi.org/10.1108/JSTP-11-2014-0261

Tueanrat, Y., Papagiannidis, S., Alamanos, E.: Going on a journey: a review of the customer journey literature. J. Bus. Res. 125, 336–353 (2021). https://doi.org/10.1016/j.jbusres.2020.12.028

Halvorsrud, R., Sanchez, O.R., Boletsis, C., Skjuve, M.: Involving Users in the Development of a Modeling Language for Customer Journeys. Software and Systems Modeling, pp. 1–30. Springer (2023). https://doi.org/10.1007/S10270-023-01081-W

Kobialka, P., Mannhardt, F., Tapia Tarifa, S. L., Johnsen, E. B.: Building user journey games from multi-party event logs. In: Proc. 3rd Intl. Workshop on Event Data and Behavioral Analytics (EdbA 2022). Lecture Notes in Business Information Processing 468, pp. 71–83. Springer (2022). https://doi.org/10.1007/978-3-031-27815-0_6

Kobialka, P., Schlatte, R., Bergersen, G. R., Tapia Tarifa, S. L., Johnsen, E. B.: Simulating user journeys with active objects. In: Active Object Languages: Current Research Trends. Lecture Notes in Computer Science 14360. Springer (2023), to appear

Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic Methods Program. 60–61, 17–139 (2004)

Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted transition systems. J. Logic Algebraic Progr. 79(7), 689–703 (2010). https://doi.org/10.1016/j.jlap.2010.07.010

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K. G., Lime, D.: UPPAAL-Tiga: Time for playing games!. In: Proc. 19th Intl. Conf. on Computer Aided Verification (CAV 2007)). Lecture Notes in Computer Science 4590, pp. 121–125. Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_14

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/s100090050010

Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Proc. First Intl. Conf. on Runtime Verification (RV 2010). Lecture Notes in Computer Science 6418, pp. 122–135. Springer (2010). https://doi.org/10.1007/978-3-642-16612-9_11

van der Aalst, W.M., Rubin, V., Verbeek, E., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010). https://doi.org/10.1007/s10270-008-0106-z

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2020)

User Journey Games Repository. https://github.com/smartjourneymining/User-Journey-Games/releases/tag/SoSym2023

Leemans, S. J. J., Poppe, E., Wynn, M.T.: Directly follows-based process mining: exploration & a case study. In: Intl. Conf. Process Mining (ICPM 2019). pp. 25–32. IEEE (2019). https://doi.org/10.1109/ICPM.2019.00015

Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.: Trace alignment in process mining: Opportunities for process diagnostics. In: Proc. 8th Intl. Conf. on Business Process Management (BPM 2010). Lecture Notes in Computer Science 6336, pp. 227–242. Springer (2010). https://doi.org/10.1007/978-3-642-15618-2_17

Bergersen, G.R., Sjøberg, D.I.K., Dybå, T.: Construction and validation of an instrument for measuring programming skill. IEEE Trans. Softw. Eng. 40(12), 1163–1184 (2014). https://doi.org/10.1109/TSE.2014.2348997

Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)