Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giao diện người dùng để điều khiển ống nội soi trong các hệ thống phẫu thuật: một đánh giá tổng quát
Tóm tắt
Một loạt các giao diện máy tính người dùng được sử dụng bởi các hệ thống phẫu thuật robot để điều khiển và vận hành các ống nội soi trong quá trình phẫu thuật xâm lấn tối thiểu. Mục đích của bài đánh giá này là xem xét các giao diện người dùng khác nhau được sử dụng trong cả các hệ thống thương mại và các nguyên mẫu nghiên cứu. Một đánh giá tổng quát hoàn chỉnh của tài liệu khoa học đã được thực hiện bằng cách sử dụng các cơ sở dữ liệu PubMed và IEEE Xplore để xác định các giao diện người dùng được sử dụng trong các sản phẩm thương mại và nguyên mẫu nghiên cứu của các hệ thống phẫu thuật robot và các giá đỡ ống nội soi robot. Các bài báo liên quan đến các ống nội soi được vận hành với giao diện máy tính người dùng đã được đưa vào. Nhiều khía cạnh của giao diện người dùng cho việc điều khiển ống nội soi trong các hệ thống thương mại và nghiên cứu đã được xem xét. Sự hỗ trợ cho ống nội soi được phân loại thành các hệ thống phẫu thuật robot (cho nhiều cổng, một cổng và lỗ tự nhiên) và các giá đỡ ống nội soi robot (cho nội soi cứng, khớp có thể điều chỉnh và nội soi linh hoạt). Các lợi ích và bất lợi của việc điều khiển bởi các giao diện người dùng khác nhau như chân, tay, giọng nói, theo dõi đầu, mắt, và theo dõi công cụ đã được nêu rõ. Trong bài đánh giá, có thể thấy rằng điều khiển bằng tay, với sự quen thuộc và tính trực quan của nó, là giao diện được sử dụng nhiều nhất trong các hệ thống thương mại. Điều khiển bằng chân, theo dõi đầu, và theo dõi công cụ đang ngày càng được sử dụng để giải quyết các hạn chế, chẳng hạn như gián đoạn quy trình phẫu thuật, do việc sử dụng giao diện tay gây ra. Việc tích hợp sự kết hợp của các giao diện người dùng khác nhau cho việc điều khiển ống nội soi có thể mang lại lợi ích tối đa cho các bác sĩ phẫu thuật. Tuy nhiên, việc chuyển đổi mượt mà giữa các giao diện có thể đặt ra thách thức khi kết hợp các cách điều khiển.
Từ khóa
#giao diện người dùng #phẫu thuật robot #ống nội soi #điều khiển máy tính người dùng #đánh giá tổng quátTài liệu tham khảo
Ali JM, Lam K, Coonar AS (2018) Robotic camera assistance: the future of laparoscopic and thoracoscopic surgery? Surg Innov 25:485–491
Ishimaru T, Deie K, Sakai T, Satoh H, Nakazawa A, Harada K, Takazawa S, Fujishiro J, Sugita N, Mitsuishi M, Iwanaka T (2018) Development of a skill evaluation system for the camera assistant using an infant-sized laparoscopic box trainer. J Laparoendosc Adv Surg Tech 28:906–911
Huettl F, Lang H, Paschold M, Watzka F, Wachter N, Hensel B, Kneist W, Huber T (2020) Rating of camera navigation skills in colorectal surgery. Int J Colorectal Dis 35:1111–1115
Zhu A, Yuan C, Piao D, Jiang T, Jiang H (2013) Gravity line strategy may reduce risks of intraoperative injury during laparoscopic surgery. Surg Endosc 27:4478–4484
Ohmura Y, Suzuki H, Kotani K, Teramoto A (2019) Comparative effectiveness of human scope assistant versus robotic scope holder in laparoscopic resection for colorectal cancer. Surg Endosc 33:2206–2216
Kim JS, Park WC, Lee JH (2019) Comparison of short-term outcomes of laparoscopic-assisted colon cancer surgery using a joystick-guided endoscope holder (Soloassist II) or a human assistant. Ann Coloproctol 35:181–186
Ngu JC-Y, Teo N-Z (2021) A novel method to objectively assess robotic assistance in laparoscopic colorectal surgery. Int J Med Robot Comput Assist Surg 17:e2251
Wijsman PJM, Molenaar L, van’t Hullenaar CDP, van Vugt BST, Bleeker WA, Draaisma WA, Broeders IAMJ (2019) Ergonomics in handheld and robot-assisted camera control: a randomized controlled trial. Surg Endosc 33:3919–3925
Wee IJY, Kuo L-J, Ngu JC-Y (2020) A systematic review of the true benefit of robotic surgery: ergonomics. Int J Med Robot Comput Assist Surg 16:e2113
Ruiter JG, Bonnema GM, van der Voort MC, Broeders IAMJ (2013) Robotic control of a traditional flexible endoscope for therapy. J Robot Surg 7:227–234
Velazco-Garcia JD, Navkar NV, Balakrishnan S, Abi-Nahed J, Al-Rumaihi K, Darweesh A, Al-Ansari A, Christoforou EG, Karkoub M, Leiss EL, Tsiamyrtzis P, Tsekos NV (2021) End-user evaluation of software-generated intervention planning environment for transrectal magnetic resonance-guided prostate biopsies. Int J Med Robot 17:1–12
Rozeboom E, Ruiter J, Franken M, Broeders I (2014) Intuitive user interfaces increase efficiency in endoscope tip control. Surg Endosc 28:2600–2605
Zorn L, Nageotte F, Zanne P, Legner A, Dallemagne B, Marescaux J, Mathelin Md (2018) A novel telemanipulated robotic assistant for surgical endoscopy: preclinical application to ESD. IEEE Trans Biomed Eng 65:797–808
Chen AC, Pastis NJ Jr, Mahajan AK, Khandhar SJ, Simoff MJ, Machuzak MS, Cicenia J, Gildea TR, Silvestri GA (2021) Robotic bronchoscopy for peripheral pulmonary lesions: a multicenter pilot and feasibility study (BENEFIT). Chest 159:845–852
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tunçalp Ö, Straus SE (2018) PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Internal Med 169:467–473
Huang Y, Lai W, Cao L, Liu J, Li X, Burdet E, Phee SJ (2021) A three-limb teleoperated robotic system with foot control for flexible endoscopic surgery. Ann Biomed Eng 49:2282–2296
Yang YJ, Udatha S, Kulić D, Abdi E (2020) A novel foot interface versus voice for controlling a robotic endoscope holder. In: 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), pp 272–279
Berkelman P, Cinquin P, Boidard E, Troccaz J, Létoublon C, Long J-a (2005) Development and testing of a compact endoscope manipulator for minimally invasive surgery. Comput Aided Surg 10:1–13
Allaf ME, Jackman SV, Schulam PG, Cadeddu JA, Lee BR, Moore RG, Kavoussi LR (1998) Laparoscopic visual field. Surg Endosc 12:1415–1418
Mirbagheri A, Farahmand F, Meghdari A, Karimian F (2011) Design and development of an effective low-cost robotic cameraman for laparoscopic surgery: RoboLens. Sci Iran 18:105–114
Gumbs AA, Crovari F, Vidal C, Henri P, Gayet B (2007) Modified robotic lightweight endoscope (ViKY) validation in vivo in a porcine model. Surg Innov 14:261–264
Nishikawa A, Hosoi T, Koara K, Negoro D, Hikita A, Asano S, Kakutani H, Miyazaki F, Sekimoto M, Yasui M, Miyake Y, Takiguchi S, Monden M (2003) FAce MOUSe: a novel human-machine interface for controlling the position of a laparoscope. IEEE Trans Robot Autom 19:825–841
Zinchenko K, Komarov O, Song K (2017) Virtual reality control of a robotic camera holder for minimally invasive surgery. In: 2017 11th Asian Control Conference (ASCC), pp 970–975
Kuo JY, Song KT (2020) Human interface and control of a robotic endoscope holder based on an AR approach. In: 2020 International Automatic Control Conference (CACS), pp 1–6
Aaltonen IE, Wahlström M (2018) Envisioning robotic surgery: surgeons’ needs and views on interacting with future technologies and interfaces. Int J Med Robot Comput Assist Surg 14:e1941
Huang Y, Li J, Zhang X, Xie K, Li J, Liu Y, Ng CSH, Chiu PWY, Li Z (2022) A Surgeon preference-guided autonomous instrument tracking method with a robotic flexible endoscope based on dVRK platform. IEEE Robot Autom Lett 7:2250–2257
Chen Y, Zhang C, Wu Z, Zhao J, Yang B, Huang J, Luo Q, Wang L, Xu K (2021) The SHURUI system: a modular continuum surgical robotic platform for multiport, hybrid-port, and single-port procedures. IEEE/ASME Trans Mechatron 27:3186
Millan B, Nagpal S, Ding M, Lee JY, Kapoor A (2021) A scoping review of emerging and established surgical robotic platforms with applications in urologic surgery. Soc Int d’Urol J 2:300–310
Khandalavala K, Shimon T, Flores L, Armijo PR, Oleynikov D (2019) Emerging surgical robotic technology: a progression toward microbots. Ann Laparosc Endosc Surg 5:3
Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32:1636–1655
Schurr MO, Buess G, Neisius B, Voges U (2000) Robotics and telemanipulation technologies for endoscopic surgery. Surg Endosc 14:375–381
Kakeji Y, Konishi K, Ieiri S, Yasunaga T, Nakamoto M, Tanoue K, Baba H, Maehara Y, Hashizume M (2006) Robotic laparoscopic distal gastrectomy: a comparison of the da Vinci and Zeus systems. Int J Med Robot Comput Assist Surg 2:299–304
Da Vinci Instruments. Intuitive Surgical. https://www.intuitive.com/en-us/products-and-services/da-vinci/instruments. Accessed 25 Apr 2022
Wang Y, Li Z, Yi B, Zhu S (2022) Initial experience of Chinese surgical robot “Micro Hand S”-assisted versus open and laparoscopic total mesorectal excision for rectal cancer: short-term outcomes in a single center. Asian J Surg 45:299–306
Pappas T, Fernando A, Nathan M (2020) 1—Senhance surgical system: robotic-assisted digital laparoscopy for abdominal, pelvic, and thoracoscopic procedures. In: Abedin-Nasab MH (ed) Handbook of robotic and image-guided surgery. Elsevier, Amsterdam, pp 1–14
Koukourikis P, Rha KH (2021) Robotic surgical systems in urology: What is currently available? Investig Clin Urol 62:14–22
Kawashima K, Kanno T, Tadano K (2019) Robots in laparoscopic surgery: current and future status. BMC Biomed Eng 1:12
Lim JH, Lee WJ, Choi SH, Kang CM (2021) Cholecystectomy using the Revo-i robotic surgical system from Korea: the first clinical study. Updat Surg 73:1029–1035
Lee HK, Lee KE, Ku J, Lee KH (2021) Revo-i: the competitive Korean surgical robot. Gyne Robot Surg 2:45–52
Bitrack. Rob Surgical. https://www.robsurgical.com/bitrack/. Accessed 25 Apr 2022
avateramedical GmbH. What makes avatera so special? https://www.avatera.eu/en/avatera-system. Accessed 08 Jun 2022
Liatsikos E, Tsaturyan A, Kyriazis I, Kallidonis P, Manolopoulos D, Magoutas A (2022) Market potentials of robotic systems in medical science: analysis of the Avatera robotic system. World J Urol 40:283–289
Morton J, Hardwick RH, Tilney HS, Gudgeon AM, Jah A, Stevens L, Marecik S, Slack M (2021) Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures. Surg Endosc 35:2169–2177
Kawasaki Group (2021) Flying high in achieving a medical revolution: The hinotori*TM robotic-assisted surgery system. Scope, Kawasaki Heavy Industries Quarterly Newsletter 127. https://global.kawasaki.com/en/scope/pdf_e/scope127_01.pdf. Accessed 28 Apr 2022
Nature Research Custom Media, Medicaroid. A new era of robotic-assisted surgery. Springer Nature Limited. https://www.nature.com/articles/d42473-021-00164-w. Accessed 28 Apr 2022
Chassot J, Friedrich M, Schoeneich P, Salehian M (2021) Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy. European Patent Office, EP3905980A2
Wessling B (2022) Distalmotion, the company behind Dexter, raises $90 million in funding. The Robot Report. https://www.therobotreport.com/distalmotion-the-company-behind-dexter-raises-90-million-in-funding/. Accessed 27 Jun 2022
Jo Y, Kim YJ, Cho M, Lee C, Kim M, Moon H-M, Kim S (2020) Virtual reality-based control of robotic endoscope in laparoscopic surgery. Int J Control Autom Syst 18:150–162
MicroPort Scientific Corporation (2020) MicroPort MedBot’s. Toumai® endoscopic surgical system completes first robot-assisted extraperitoneal radical prostatectomy. https://microport.com/news/microport-medbots-toumai-endoscopic-surgical-system-completes-first-robot-assisted-extraperitoneal-radical-prostatectomy#. Accessed 21 Jul 2022
Shu Rui cracks the “Da Vinci Code”, and the localization of endoscopic surgical robots goes further. https://www.hcitinfo.com/axzwe1m00kzc.html. Accessed 28 Apr 2022
Nature Research Custom Media, Shu Rui. Getting to grips with enhanced dexterity. https://www.nature.com/articles/d42473-020-00269-8. Accessed 10 May 2022
Medtronic. HugoTM RAS System. https://www.medtronic.com/covidien/en-gb/robotic-assisted-surgery/hugo-ras-system.html. Accessed 16 May 2022
Whooley S (2022) The road to a robot: Medtronic’s development process for its Hugo RAS system Mass Device. https://www.massdevice.com/the-road-to-a-robot-medtronics-development-process-for-hugo-ras-system/
Digital Innovation Hub Healthcare Robotics (DIH-HERO). Surgical robot with DLR technology on the market. https://dih-hero.eu/surgical-robot-with-dlr-technology-on-the-market/. Accessed 27 Jun 2022
SS Innovations. SSI Mantra. https://ssinnovations.com/home/technology/. Accessed 21 Jul 2022
Brodie A, Vasdev N (2018) The future of robotic surgery. Ann R Coll Surg Engl 100:4–13
Omisore OM, Han S, Xiong J, Li H, Li Z, Wang L (2022) A review on flexible robotic systems for minimally invasive surgery. IEEE Trans Syst Man Cybern Syst 52:631–644
Kneist W, Stein H, Rheinwald M (2020) Da Vinci Single-Port robot-assisted transanal mesorectal excision: a promising preclinical experience. Surg Endosc 34:3232–3235
Xu K, Zhao J, Fu M (2015) Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans Mechatron 20:2133–2145
Vicarious Surgical US, Inc. Vicarious Surgical Robotic System. https://www.vicarioussurgical.com/. Accessed 26 May 2022
Sachs A, Khalifa S (2017) Virtual reality surgical device. Vicarious Surgical Inc., Cambridge, MA
Ren H, Chen CX, Cai C, Ramachandra K, Lalithkumar S (2017) Pilot study and design conceptualization for a slim single-port surgical manipulator with spring backbones and catheter-size channels. In: 2017 IEEE International Conference on Information and Automation (ICIA), pp 499–504
Li C, Gu X, Xiao X, Lim CM, Ren H (2019) A robotic system with multichannel flexible parallel manipulators for single port access surgery. IEEE Trans Ind Inf 15:1678–1687
Titan Medical Inc. Discover Enos Technology. https://titanmedicalinc.com/technology/. Accessed 24 Apr 2022
Seeliger B, Diana M, Ruurda JP, Konstantinidis KM, Marescaux J, Swanström LL (2019) Enabling single-site laparoscopy: the SPORT platform. Surg Endosc 33:3696–3703
Virtual Incision Corporation. Virtual Incision announces approval to complete clinical study enrollment for its MIRA® platform. https://virtualincision.com/approval-to-complete-clinical-study-enrollment/. Accessed 24 Apr 2022
Zhu J, Lyu L, Xu Y, Liang H, Zhang X, Ding H, Wu Z (2021) Intelligent soft surgical robots for next-generation minimally invasive surgery. Adv Intell Syst 3:2100011
Johnson PJ, Serrano CMR, Castro M, Kuenzler R, Choset H, Tully S, Duvvuri U (2013) Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 123:1168–1172
Maloney L (2016) A twist for surgical robotics. GlobalSpec. https://insights.globalspec.com/article/3544/a-twist-for-surgical-robotics. Accessed 12 Jun 2022
Graetzel CF, Sheehy A, Noonan DP (2019) Robotic bronchoscopy drive mode of the Auris Monarch platform. In: 2019 International Conference on Robotics and Automation (ICRA), pp 3895–3901
da Veiga T, Chandler JH, Lloyd P, Pittiglio G, Wilkinson NJ, Hoshiar AK, Harris RA, Valdastri P (2020) Challenges of continuum robots in clinical context: a review. Prog Biomed Eng 2:032003
Johnson & Johnson (2022) Ethicon’s MONARCH® endoscopic robotic platform receives FDA 510(k) clearance for urology procedures. https://www.jnjmedtech.com/en-US/news-events/ethicons-monarch-endoscopic-robotic-platform-receives-fda-510k-clearance-urology. Accessed 18 May 2022
Auris Health, Inc. MonarchTM Platform user manual. https://usermanual.wiki/Auris-Surgical-Robotics/MONARCH-3852937.pdf. Accessed 12 Jun 2022
Berthet-Rayne P, Gras G, Leibrandt K, Wisanuvej P, Schmitz A, Seneci CA, Yang G-Z (2018) The i2Snake robotic platform for endoscopic surgery. Ann Biomed Eng 46:1663–1675
Caycedo A (2021) Intuitive Ion endoluminal system—a robotic-assisted endoluminal platform for minimally invasive peripheral lung biopsy. SAGES, Los Angeles
Agrawal A, Murgu S. Robot-assisted bronchoscopy. World Association for Bronchology and Interventional Pulmonology (WABIP) Newsletter 7(3). https://www.wabip.com/misc/497-tech-7-3. Accessed 24 Apr 2022
Food and Drug Administration (FDA), Department of Health and Human Services. K182188 Ion™ Endoluminal System (Model IF1000) 510(k) premarket notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K182188. Accessed 24 Apr 2022
Kume K, Sakai N, Ueda T (2019) Development of a novel gastrointestinal endoscopic robot enabling complete remote control of all operations: endoscopic therapeutic robot system (ETRS). Gastroenterol Res Pract 2019:6909547–6909547
Hwang M, Kwon D-S (2020) K-FLEX: a flexible robotic platform for scar-free endoscopic surgery. Int J Med Robot Comput Assist Surg 16:e2078
Olympus Corporation. Olympus GIF Type 2T160. http://www.olympus-ural.ru/files/GIF-2T160.pdf. Accessed 11 May 2022
Tay G, Tan H-K, Nguyen TK, Phee SJ, Iyer NG (2018) Use of the EndoMaster robot-assisted surgical system in transoral robotic surgery: a cadaveric study. Int J Med Robot Comput Assist Surg 14:e1930
Atallah S, Sanchez A, Bianchi E, Larach S (2021) Video demonstration of the ColubrisMX ELS robotic system for local excision and suture closure in a preclinical model. Tech Coloproctol 25:1333–1333
EndoQuest Robotics. Endoluminal Robotic Surgical System. https://endoquestrobotics.com/next-generation-robotic-surgery.html. Accessed 09 Feb 2023
Li Z, Chiu PWY (2018) Robotic endoscopy. Visc Med 34:45–51
Taylor RH, Funda J, Eldridge B, Gomory S, Gruben K, LaRose D, Talamini M, Kavoussi L, Anderson J (1995) A telerobotic assistant for laparoscopic surgery. IEEE Eng Med Biol Mag 14(3):279–288
Schneider A, Feussner H (2017) Chapter 10—mechatronic support systems and robots. In: Schneider A, Feussner H (eds) Biomedical engineering in gastrointestinal surgery. Academic Press, Cambridge, pp 387–441
Buess GF, Arezzo A, Schurr MO, Ulmer F, Fisher H, Gumb L, Testa T, Nobman C (2000) A new remote-controlled endoscope positioning system for endoscopic solo surgery. Surg Endosc 14:395–399
Polet R, Donnez J (2004) Gynecologic laparoscopic surgery with a palm-controlled laparoscope holder. J Am Assoc Gynecol Laparosc 11:73–78
Polet R, Donnez J (2008) Using a laparoscope manipulator (LAPMAN) in laparoscopic gynecological surgery. Surg Technol Int 17:187–191
Pisla D, Gherman BG, Suciu M, Vaida C, Lese D, Sabou C, Plitea N (2010) On the dynamics of a 5 DOF parallel hybrid robot used in minimally invasive surgery. In: Pisla D, Ceccarelli M, Husty M, Corves B (eds) New trends in mechanism science. Springer, Dordrecht, pp 691–699
Yamada K, Kato S (2008) Robot-assisted thoracoscopic lung resection aimed at solo surgery for primary lung cancer. Gen Thorac Cardiovasc Surg 56:292–294
Takahashi M, Takahashi M, Nishinari N, Matsuya H, Tosha T, Minagawa Y, Shimooki O, Abe T (2017) Clinical evaluation of complete solo surgery with the “ViKY®” robotic laparoscope manipulator. Surg Endosc 31:981–986
Gossot D, Grigoroiu M, Brian E, Seguin-Givelet A (2017) Technical means to improve image quality during thoracoscopic procedures. J Vis Surg 3:53–53
Voros S, Haber GP, Menudet JF, Long JA, Cinquin P (2010) ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking. IEEE/ASME Trans Mechatron Mechatron 15:879–886
Gossot D, Abid W, Seguin-Givelet A (2018) Motorized scope positioner for solo thoracoscopic surgery. Video-Assist Thorac Surg 3:47
FreeHand Surgical. FreeHand. https://www.freehandsurgeon.com/. Accessed 28 Apr 2022
Herman B, Dehez B, Duy KT, Raucent B, Dombre E, Krut S (2009) Design and preliminary in vivo validation of a robotic laparoscope holder for minimally invasive surgery. Int J Med Robot Comput Assist Surg 5:319–326
Trévillot V, Sobral R, Dombre E, Poignet P, Herman B, Crampette L (2013) Innovative endoscopic sino-nasal and anterior skull base robotics. Int J Comput Assist Radiol Surg 8:977–987
Sina Robotics & Medical Innovators Co., Ltd. RoboLens: Laparoscopic Surgery Assistant Robot (Standalone model). https://sinamed.ir/robotic-tele-surgery/robolens-stand-alone-model/. Accessed 16 Jun 2022
Shervin T, Haydeh S, Atousa J, Zahra A, Alireza M, Ali J, Faramarz K, Farzam F (2014) Comparing the operational related outcomes of a robotic camera holder and its human counterpart in laparoscopic ovarian cystectomy: a randomized control trial. Front Biomed Technol 1:48
Alireza M, Farzam F, Borna G, Keyvan Amini K, Sina P, Mohammad Javad S, Mohammad Hasan O, Faramarz K, Karamallah T (2015) Operation and human clinical trials of RoboLens: an assistant robot for laparoscopic surgery. Front Biomed Technol 2:184
Wijsman PJM, Broeders IAMJ, Brenkman HJ, Szold A, Forgione A, Schreuder HWR, Consten ECJ, Draaisma WA, Verheijen PM, Ruurda JP, Kaufman Y (2018) First experience with THE AUTOLAP™ SYSTEM: an image-based robotic camera steering device. Surg Endosc 32:2560–2566
Wijsman PJM, Voskens FJ, Molenaar L, van’t Hullenaar CDP, Consten ECJ, Draaisma WA, Broeders IAMJ (2022) Efficiency in image-guided robotic and conventional camera steering: a prospective randomized controlled trial. Surg Endosc 36:2334–2340
Riverfield Inc. EMARO Pneumatic Endoscope Manipulator Robot. https://www.riverfieldinc.com/en/products/emaro/. Accessed 28 Apr 2022
Tadano K, Kawashima K (2015) A pneumatic laparoscope holder controlled by head movement. Int J Med Robot Comput Assist Surg 11:331–340
Yoshida D, Maruyama S, Takahashi I, Matsukuma A, Kohnoe S (2020) Surgical experience of using the endoscope manipulator robot EMARO in totally extraperitoneal inguinal hernia repair: a case report. Asian J Endosc Surg 13:448–452
HIWIN Technologies Corp. Medical Equipments. https://www.hiwin.tw/download/tech_doc/me/Medical_Equipment(E).pdf. Accessed 11 May 2022
Zinchenko K, Wu C, Song K (2017) A study on speech recognition control for a surgical robot. IEEE Trans Ind Inf 13:607–615
Friedrich DT, Sommer F, Scheithauer MO, Greve J, Hoffmann TK, Schuler PJ (2017) An innovate robotic endoscope guidance system for transnasal sinus and skull base surgery: proof of concept. J Neurol Surg B Skull Base 78:466–472
Aesculap AG. EinsteinVision® Aesculap® 3D Laparoscopy. https://www.bbraun.dk/content/dam/catalog/bbraun/bbraunProductCatalog/CW_DK/da-dk/b5/einsteinvision-3dlaparoscopy.pdf. Accessed 15 Jun 2022
Beckmeier L, Klapdor R, Soergel P, Kundu S, Hillemanns P, Hertel H (2014) Evaluation of active camera control systems in gynecological surgery: construction, handling, comfort, surgeries and results. Arch Gynecol Obstet 289:341–348
AKTORmed GmbH. SOLOASSIST II. https://aktormed.info/en/products/soloassist-ii. Accessed 27 Apr 2022
Kristin J, Kolmer A, Kraus P, Geiger R, Klenzner T (2015) Development of a new endoscope holder for head and neck surgery—from the technical design concept to implementation. Eur Arch Otorhinolaryngol 272:1239–1244
Kristin J, Geiger R, Kraus P, Klenzner T (2015) Assessment of the endoscopic range of motion for head and neck surgery using the SOLOASSIST endoscope holder. Int J Med Robot Comput Assist Surg 11:418–423
Park J-O, Kim M, Park Y, Kim M-S, Sun D-I (2020) Transoral endoscopic thyroid surgery using robotic scope holder: our initial experiences. J Minimal Access Surg 16:235–238
Zimmer Biomet. ROSA ONE® Brain: robotic neurosurgery. https://www.zimmerbiomet.com/en/products-and-solutions/zb-edge/robotics/rosa-brain.html. Accessed 06 Jul 2022
De Pauw T, Kalmar A, Van De Putte D, Mabilde C, Blanckaert B, Maene L, Lievens M, Van Haver A-S, Bauwens K, Van Nieuwenhove Y, Dewaele F (2020) A novel hybrid 3D endoscope zooming and repositioning system: design and feasibility study. Int J Med Robot Comput Assist Surg 16:e2050
Zhong F, Li P, Shi J, Wang Z, Wu J, Chan JYK, Leung N, Leung I, Tong MCF, Liu YH (2020) Foot-controlled robot-enabled EnDOscope manipulator (FREEDOM) for sinus surgery: design, control, and evaluation. IEEE Trans Biomed Eng 67:1530–1541
Chan JYK, Leung I, Navarro-Alarcon D, Lin W, Li P, Lee DLY, Liu Y-h, Tong MCF (2016) Foot-controlled robotic-enabled endoscope holder for endoscopic sinus surgery: a cadaveric feasibility study. Laryngoscope 126:566–569
Avellino I, Bailly G, Arico M, Morel G, Canlorbe G (2020) Multimodal and mixed control of robotic endoscopes. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, pp 1–14
Li Z, Zin Oo M, Nalam V, Duc Thang V, Ren H, Kofidis T, Yu H (2016) Design of a novel flexible endoscope—cardioscope. J Mech Robot. https://doi.org/10.1115/1.4032272
Li Z, Ng CSH (2016) Future of uniportal video-assisted thoracoscopic surgery—emerging technology. Ann Cardiothorac Surg 5:127–132
Omori T, Arai M, Moromugi S (2021) A prototype of a head-mounted input device for robotic laparoscope holders using lower jaw exercises as command signals detected by a photoreflector array. In: 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), pp 1–6
Arai M, Omori T, Moromugi S, Adachi T, Kosaka T, Ono S, Eguchi S (2019) A robotic laparoscope holder operated by jaw movements and triaxial head rotations. In: 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR), pp A1–5–1-A1–5–6
Legrand J, Ourak M, Van Gerven L, Vander Poorten V, Vander Poorten E (2022) A miniature robotic steerable endoscope for maxillary sinus surgery called PliENT. Sci Rep 12:2299
Ma X, Song C, Qian L, Liu W, Chiu PW, Li Z (2022) Augmented reality-assisted autonomous view adjustment of a 6-DOF robotic stereo flexible endoscope. IEEE Trans Med Robot Bionics 4:356–367
Iwasa T, Nakadate R, Onogi S, Okamoto Y, Arata J, Oguri S, Ogino H, Ihara E, Ohuchida K, Akahoshi T, Ikeda T, Ogawa Y, Hashizume M (2018) A new robotic-assisted flexible endoscope with single-hand control: endoscopic submucosal dissection in the ex vivo porcine stomach. Surg Endosc 32:3386–3392
Eickhoff A, Van Dam J, Jakobs R, Kudis V, Hartmann D, Damian U, Weickert U, Schilling D, Riemann JF (2007) Computer-assisted colonoscopy (the neoguide endoscopy system): results of the first human clinical trial (“pace study”). Am J Gastroenterol 102:261–266
Food and Drug Administration (FDA), Department of Health and Human Services (2017) K162330 Flex Robotic System and Flex Colorectal Drive. https://www.accessdata.fda.gov/cdrh_docs/pdf16/K162330.pdf. Accessed 13 Jun 2022
Sekhon Inderjit Singh HK, Armstrong ER, Shah S, Mirnezami R (2021) Application of robotic technologies in lower gastrointestinal tract endoscopy: a systematic review. World J Gastrointest Endosc 13:673–697
Food and Drug Administration (FDA), Department of Health and Human Services (2017) K070622 NeoGuide Endoscopy System, special 510(K) device modifications summary. https://www.accessdata.fda.gov/cdrh_docs/pdf7/K070622.pdf. Accessed 28 Jun 2022
Era Endoscopy SRL. Endotics System. http://www.endotics.com/index.php. Accessed 13 Jun 2022
Cosentino F, Tumino E, Passoni GR, Morandi E, Capria A (2009) Functional Evaluation of the endotics system, a new disposable self-propelled robotic colonoscope: in vitro tests and clinical trial. Int J Artif Organs 32:517–527
ECE Medical Systems. endodrive®. http://www.endodrive.de/. Accessed 27 Apr 2022
Lim SG (2020) The development of robotic flexible endoscopic platforms. Int J Gastrointest Interv 9:9–12
Rassweiler J, Fiedler M, Charalampogiannis N, Kabakci AS, Saglam R, Klein J-T (2018) Robot-assisted flexible ureteroscopy: an update. Urolithiasis 46:69–77
ELMED Medical Systems. Avicenna Roboflex. https://elmed-as.com/products/avicenna-roboflex/. Accessed 19 Jun 2022
Reilink R, de Bruin G, Franken M, Mariani MA, Misra S, Stramigioli S (2010) Endoscopic camera control by head movements for thoracic surgery. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp 510–515
GI View. Aer-O-Scope GI Endoscopic System. https://www.giview.com/aer-o-scope. Accessed 12 Jun 2022
Vucelic B, Rex D, Pulanic R, Pfefer J, Hrstic I, Levin B, Halpern Z, Arber N (2006) The Aer-O-Scope: proof of concept of a pneumatic, skill-independent, self-propelling, self-navigating colonoscope. Gastroenterology 130:672–677
Food and Drug Administration (FDA), Department of Health & Human Services (2016) K161791 Aer-O-Scope Colonoscope System. https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161791.pdf. Accessed 28 Jun 2022
Groth S, Rex DK, Rösch T, Hoepffner N (2011) High cecal intubation rates with a new computer-assisted colonoscope: a feasibility study. Am J Gastroenterol 106:1075–1080
Food and Drug Administration (FDA), Department of Health & Human Services (2016) K161355 invendoscopy E200 System. https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161355.pdf. Accessed 28 Jun 2022
Li Y, Liu H, Hao S, Li H, Han J, Yang Y (2017) Design and control of a novel gastroscope intervention mechanism with circumferentially pneumatic-driven clamping function. Int J Med Robot Comput Assist Surg 13:e1745
Kume K, Sakai N, Goto T (2018) Haptic feedback is useful in remote manipulation of flexible endoscopes. Endosc Int Open 6:E1134–E1139
Kume K, Sakai N, Goto T (2015) Development of a novel endoscopic manipulation system: the Endoscopic Operation Robot ver.3. Endoscopy 47:815–819
Sivananthan A, Kogkas A, Glover B, Darzi A, Mylonas G, Patel N (2021) A novel gaze-controlled flexible robotized endoscope; preliminary trial and report. Surg Endosc 35:4890–4899
Han J, Davids J, Ashrafian H, Darzi A, Elson DS, Sodergren M (2022) A systematic review of robotic surgery: from supervised paradigms to fully autonomous robotic approaches. Int J Med Robot Comput Assist Surg 18:e2358
Takács Á, Nagy D, Rudas I, Haidegger T (2016) Origins of surgical robotics: From space to the operating room. Acta Polytech Hung 13:13–30
Finlay PA, Ornstein MH (1995) Controlling the movement of a surgical laparoscope. IEEE Eng Med Biol Mag 14:289–291
Mettler L, Ibrahim M, Jonat W (1998) One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery. Hum Reprod 13:2748–2750
Kranzfelder M, Schneider A, Fiolka A, Koller S, Wilhelm D, Reiser S, Meining A, Feussner H (2014) What Do we really need? Visions of an ideal human-machine interface for NOTES mechatronic support systems from the view of surgeons, gastroenterologists, and medical engineers. Surg Innov 22:432–440
Avellino I, Bailly G, Canlorbe G, Belgihti J, Morel G, Vitrani M-A (2019) Impacts of telemanipulation in robotic assisted surgery. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, Glasgow, Scotland UK, pp 583
Hares L, Roberts P, Marshall K, Slack M (2019) Using end-user feedback to optimize the design of the Versius Surgical System, a new robot-assisted device for use in minimal access surgery. BMJ Surg Interv Health Technol 1:e000019
Khorasani M, Abdurahiman N, Padhan J, Zhao H, Al-Ansari A, Becker AT, Navkar N (2022) Preliminary design and evaluation of a generic surgical scope adapter. Int J Med Robot. https://doi.org/10.1002/rcs.2475
Abdurahiman N, Khorasani M, Padhan J, Baez VM, Al-Ansari A, Tsiamyrtzis P, Becker AT, Navkar NV (2023) Scope actuation system for articulated laparoscopes. Surg Endosc. https://doi.org/10.1007/s00464-023-09904-z
Abdurahiman N, Padhan J, Zhao H, Balakrishnan S, Al-Ansari A, Abinahed J, Velasquez CA, Becker AT, Navkar NV (2022) Human-computer interfacing for control of angulated scopes in robotic scope assistant systems. In: 2022 IEEE International Symposium on Medical Robotics (ISMR), pp 1–7
Velazco-Garcia JD, Navkar NV, Balakrishnan S, Younes G, Abi-Nahed J, Al-Rumaihi K, Darweesh A, Elakkad MSM, Al-Ansari A, Christoforou EG, Karkoub M, Leiss EL, Tsiamyrtzis P, Tsekos NV (2021) Evaluation of how users interface with holographic augmented reality surgical scenes: interactive planning MR-Guided prostate biopsies. Int J Med Robot 17:e2290
Mojica CMM, Garcia JDV, Navkar NV, Balakrishnan S, Abinahed J, El Ansari W, Al-Rumaihi K, Darweesh A, Al-Ansari A, Gharib M, Karkoub M, Leiss EL, Seimenis I, Tsekos NV (2018) A prototype holographic augmented reality interface for image-guided prostate cancer interventions. In: Eurographics Workshop on Visual Computing for Biology and Medicine, pp 17–21
Hong N, Kim M, Lee C, Kim S (2019) Head-mounted interface for intuitive vision control and continuous surgical operation in a surgical robot system. Med Biol Eng Comput 57:601–614
Qian L, Song C, Jiang Y, Luo Q, Ma X, Chiu PW, Li Z, Kazanzides P (2020) FlexiVision: teleporting the surgeon’s eyes via robotic flexible endoscope and head-mounted display. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3281–3287
Mak YX, Zegel M, Abayazid M, Mariani MA, Stramigioli S (2022) Experimental evaluation using head motion and augmented reality to intuitively control a flexible endoscope. In: 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), pp 1–7
Zorzal ER, Gomes JMC, Sousa M, Belchior P, da Silva PG, Figueiredo N, Lopes DS, Jorge J (2020) Laparoscopy with augmented reality adaptations. J Biomed Inform 107:103463
Jayender J, Xavier B, King F, Hosny A, Black D, Pieper S, Tavakkoli A (2018) A novel mixed reality navigation system for laparoscopy surgery. Springer, Berlin, pp 72–80
Park A, Lee G, Seagull FJ, Meenaghan N, Dexter D (2010) Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg 210:306–313
Monfared S, Athanasiadis DI, Umana L, Hernandez E, Asadi H, Colgate CL, Yu D, Stefanidis D (2022) A comparison of laparoscopic and robotic ergonomic risk. Surg Endosc 36:8397–8402
Sari V, Nieboer TE, Vierhout ME, Stegeman DF, Kluivers KB (2010) The operation room as a hostile environment for surgeons: physical complaints during and after laparoscopy. Minim Invasive Ther Allied Technol 19:105–109
Catanzarite T, Tan-Kim J, Whitcomb EL, Menefee S (2018) Ergonomics in surgery: a review. Female Pelvic Med Reconstr Surg 24:1–12
Velazco-Garcia JD, Navkar NV, Balakrishnan S, Abinahed J, Al-Ansari A, Darweesh A, Al-Rumaihi K, Christoforou E, Leiss EL, Karkoub M, Tsiamyrtzis P, Tsekos NV (2020) Evaluation of interventional planning software features for MR-guided transrectal prostate biopsies. In: 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), pp 951–954
Velazco-Garcia JD, Navkar NV, Balakrishnan S, Abinahed J, Al-Ansari A, Younes G, Darweesh A, Al-Rumaihi K, Christoforou EG, Leiss EL, Karkoub M, Tsiamyrtzis P, Tsekos NV (2019) Preliminary evaluation of robotic transrectal biopsy system on an interventional planning software. In: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), pp 357–362