Use of dicarboxylic acids in type 2 diabetes

British Journal of Clinical Pharmacology - Tập 75 Số 3 - Trang 671-676 - 2013
Geltrude Mingrone1, Lidia Castagneto‐Gissey1, Katherine Macé2
1Department of Internal Medicine, Catholic University of Rome, Rome, Italy
2Nestle Research Centre, Lausanne, Switzerland

Tóm tắt

Even‐number, medium‐chain dicarboxylic acids (DAs), naturally occurring in higher plants, are a promising alternative energy substrate. Unlike the homologous fatty acids, DAs are soluble in water as salts. They are β‐oxidized, providing acetyl‐CoA and succinyl‐CoA, the latter being an intermediate of the tricarboxylic acid cycle. Sebacic acid and dodecanedioic acid, DAs with 10 and 12 carbon atoms respectively, provide 6.6 and 7.2 kcal g−1 each; therefore, their energy density is intermediate between glucose and fatty acids. Dicarboxylic acids have been proved to be safe in both experimental animals and humans, and their use has recently been proposed in diabetes. Studies in animals and humans with type 2 diabetes showed that oral administration of sebacic acid improved glycaemic control, probably by enhancing insulin sensitivity, and reduced hepatic gluconeogenesis and glucose output. Moreover, dodecanedioic acid intake reduced muscle fatigue during exercise in subjects with type 2 diabetes, suggesting an improvement of energy utilization and ‘metabolic flexibility’. In this article, we review the natural sources of DAs, their fate in animals and humans and their effect in improving glucose metabolism in type 2 diabetes.

Từ khóa


Tài liệu tham khảo

10.1016/j.bbalip.2009.10.006

10.1007/s11892-006-0031-x

10.1146/annurev.nutr.22.010402.102912

10.1038/sj.ijo.0802053

10.1007/s001250051123

10.1056/NEJMoa031314

10.1113/jphysiol.2007.135871

10.1016/j.biocel.2009.02.004

10.1152/physrev.00030.2008

10.1080/13813450802676335

10.1079/PNS2004349

10.1007/s00125-005-1918-9

10.1016/j.bbrc.2009.07.064

Bertuzzi A, 2000, Disposition of dodecanedioic acid in humans, J Pharmacol Exp Ther, 292, 846

10.1177/014860719902300280

10.1177/014860719602000138

10.1016/S0261-5614(95)80011-5

10.1177/014860719401800109

10.1177/0148607193017003257

10.1177/014860719201600132

10.1159/000177693

10.1177/0148607191015004454

10.1042/bj0280031

10.1021/bi00746a029

10.1007/3-540-40021-4_1

10.1042/BST0330380

10.1371/journal.pone.0015594

10.1016/0005-2760(86)90039-1

10.1016/0005-2760(86)90104-9

10.1006/abbi.1996.0243

10.1016/0005-2760(81)90057-6

10.1016/0005-2760(86)90039-1

Liu G, 1996, Mechanisms for the transport of alpha,omega‐dicarboxylates through the mitochondrial inner membrane, J Biol Chem, 271, 338

Greco AV, 1990, Toxicity of disodium sebacate, Drugs Exp Clin Res, 16, 531

10.1016/0006-2952(93)90145-M

10.1152/ajpendo.1999.276.3.E497

10.1111/j.1463-1326.2010.01308.x

10.1172/JCI117723

10.2337/db07-1087

10.1016/0026-0495(95)90056-X

10.2337/db10-0346

10.2337/dc10-0663

10.1007/BF00838647

Broberg S, 1988, Hyperammoniemia during prolonged exercise: an effect of glycogen depletion?, J Appl Physiol, 65, 2475, 10.1152/jappl.1988.65.6.2475

10.1111/j.1748-1716.1967.tb03719.x

10.1038/210309a0

10.2337/diabetes.51.8.2395

10.1152/ajpendo.00631.2005