Use of community mobile phone big location data to recognize unusual patterns close to a pipeline which may indicate unauthorized activities and possible risk of damage

Elsevier BV - Tập 14 Số 2 - Trang 395-403 - 2017
Sheng Dong1, Hewei Zhang1, Laibin Zhang1, Li-Jian Zhou2, Lei Guo2
1The Pipeline Technology Research Center, China University of Petroleum (Beijing), Beijing, 102249, China
2PetroChina R&D Center, Langfang, 065000, Hebei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Daggitt ML, Noulas A, Shaw B, et al. Tracking urban activity growth globally with big location data. R Soc Open Sci. 2016;3(4):150688. doi: 10.1098/rsos.150688 .

De Montjoye YA, Hidalgo CA, Verleysen M, et al. Unique in the crowd: the privacy bounds of human mobility. Sci Rep. 2013;3:1376. doi: 10.1038/srep01376 .

Dong SH. Pipeline integrity management technology and practice. Beijing: Sinopec Press; 2015. p. 2–15 (in Chinese).

Doornik JA, Hendry DF. Statistical model selection with “big data”. Cogent Econ Finance. 2015;3(1):1045216. doi: 10.1080/23322039.2015.1045216 .

Duan R, Hong O, Ma G. Semi-supervised learning in inferring mobile device locations. Qual Reliab Eng Int. 2014;30(6):857–66. doi: 10.1002/qre.1701 .

Ester M, Kriegel HP, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining (KDD-96). 1996, August. 96(34): p. 226–31.

Ettinger-Dietzel SA, Dodd HR, Westhoff JT, et al. Movement and habitat selection patterns of smallmouth bass Micropterus dolomieuin an Ozark river. J Freshw Ecol. 2016;31(1):61–75. doi: 10.1080/02705060.2015.1025867 .

Guo C, Fang Y, Liu JN, et al. Study on social awareness computation methods for location-based service. J Comput Res Dev. 2013;50(12):2531–42 (in Chinese).

Guo C, Fang Y, Liu JN, et al. Analysis and processing of large data processing research. J Wuhan Univ (Information Science Edition). 2014;39(4):379–85. doi: 10.13203/j.whugis20140210 (in Chinese).

Hashem IAT, Chang V, Anuar NB, et al. The role of big data in smart city. Int J Inf Manage. 2016;36(5):748–58. doi: 10.1016/j.ijinfomgt.2016.05.002 .

Li Z, Ding B, Han J, et al. Mining periodic behaviors for moving objects. In: The 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM. 2013, April. p. 1099–108. doi: 10.1145/1835804.1835942 .

Liu JN. The recent progress on high precision applications of Beidou navigation satellite system. Report of the stanford’s 2012 PNT challenges and opportunities symp. (SCPNT 2012), 2012. (in Chinese).

Liu K, Li Y, He F, et al. Effective map-matching on the most simplified road network. In: The 20th international conference on advances in geographic information systems. ACM. 2012, November. p. 609–12. doi: 10.1145/2424321.2424429 .

Liu S, Liu Y, Ni LM, et al. Towards mobility-based clustering. In: The 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM. 2010, July. p. 919–28. doi: 10.1145/1835804.1835920 .

Lou Y, Zhang C, Zheng Y, et al. Map-matching for low-sampling-rate GPS trajectories. In The 17th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM. 2009, November. p. 352–61. doi: 10.1145/1653771.1653820 .

Narayanan M, Cherukuri AK. A study and analysis of recommendation systems for location-based social network (LBSN) with big data. IIMB Manag Rev. 2016;28(1):25–30. doi: 10.1016/j.iimb.2016.01.001 .

Pan G, Qi G, Wu Z, et al. Land-use classification using taxi GPS traces. IEEE Trans Intell Transp Syst. 2013;14(1):113–23. doi: 10.1109/TITS.2012.2209201 .

Quinlan JR. Combining instance-based and model-based learning. In: The tenth international conference on machine learning. 1993a. p. 236–43. doi: 10.1016/B978-1-55860-307-3.50037-X .

Quinlan JR. C4. 5: programs for machine learning. San Mateo: Morgan Kaufmann Publishers; 1993b.

Song C, Qu Z, Blumm N, et al. Limits of predictability in human mobility. Science. 2010;327(5968):1018–21. doi: 10.1126/science.1177170 .

Tang Y, Zhu AD, Xiao X. An efficient algorithm for mapping vehicle trajectories onto road networks. In: The 20th international conference on advances in geographic information systems. ACM. 2012, November. p. 601–4. doi: 10.1145/2424321.2424427 .

Teli P, Thomas MV, Chandrasekaran K. Big data migration between data centers in online cloud environment. Proced Technol. 2016;24:1558–65. doi: 10.1016/j.protcy.2016.05.135 .

Tsou MH. Research challenges and opportunities in mapping social media and big data. Cartogr Geogr Inf Sci. 2015;42(sup1):70–4. doi: 10.1080/15230406.2015.1059251 .

Wang XY. Analysis and processing method of location service data and privacy protection. J Jixi Univ (Integrated Edition). 2015;15(7):51–3 (in Chinese).

Yuan J, Zheng Y, Xie X. Discovering regions of different functions in a city using human mobility and POIs. In: The 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM. 2012, August. p. 186–94. doi: 10.1145/2339530.2339561 .

Yuan J, Zheng Y, Xie X, et al. T-drive: enhancing driving directions with taxi drivers’ intelligence. IEEE Trans Knowl Data Eng. 2013;25(1):220–32. doi: 10.1145/1869790.1869807

Yuan J, Zheng Y, Zhang C, et al. An interactive-voting based map matching algorithm. In: The 2010 eleventh international conference on mobile data management. IEEE Computer Society. 2010, May. p. 43–52. doi: 10.1109/MDM.2010.14 .

Zheng Y, Liu F, and Hsieh HP. U-Air: when urban air quality inference meets big data. In: The 19th ACM SIGKDD international conference on knowledge discovery and data mining. ACM. 2013, August. 1436–44. doi: 10.1145/2487575.2488188 .

Zhu B, Huang Q, Guibas L, et al. Urban population migration pattern mining based on taxi trajectories. In: 3rd international workshop on mobile sensing: the future, brought to you by big sensor data, Philadelphia, USA. 2013, April.