Use of antioxidants to extend the storage of lyophilized cell-free synthesis system

Kyu Jae Kim, So Jeong Lee, Dong‐Myung Kim

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vicente AM, Ballensiefen W, Jönsson JI (2020) How personalised medicine will transform healthcare by 2030: the ICPerMed vision. J Transl Med 18:180. https://doi.org/10.1186/s12967-020-02316-w

Pal AK, Mohanty AK, Misra M (2021) Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Adv 11:36398–36438. https://doi.org/10.1039/d1ra04060j

Zargar A, Payne GF, Bentley WE (2015) A “bioproduction breadboard”: programming, assembling, and actuating cellular networks. Curr Opin Biotechnol 36:154–160. https://doi.org/10.1016/j.copbio.2015.08.017

Choi KR, Lee SY (2023) Systems metabolic engineering of microorganisms for food and cosmetics production. Nat Rev Bioeng 1:832–857. https://doi.org/10.1038/s44222-023-00076-y

Kim JY, Ahn YJ, Lee JA et al (2023) Recent advances in the production of platform chemicals using metabolically engineered microorganisms. Curr Opin Green Sustain Chem 40:100777. https://doi.org/10.1016/j.cogsc.2023.100777

Lee JW, Na D, Park JM et al (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546. https://doi.org/10.1038/nchembio.970

Kim KJ, Lee SJ, Kim DM (2023) The use of cell-free protein synthesis to push the boundaries of synthetic biology. Biotechnol Bioprocess Eng. https://doi.org/10.1007/s12257-022-0279-2

Kelwick RJR, Webb AJ, Freemont PS (2020) Biological materials: the next frontier for cell-free synthetic biology. Front Bioeng Biotechnol 8:399. https://doi.org/10.3389/fbioe.2020.00399

Zawada JF, Burgenson D, Yin G et al (2022) Cell-free technologies for biopharmaceutical research and production. Curr Opin Biotechnol 76:102719. https://doi.org/10.1016/j.copbio.2022.102719

Wilding KM, Zhao EL, Earl CC et al (2019) Thermostable lyoprotectant-enhanced cell-free protein synthesis for on-demand endotoxin-free therapeutic production. N Biotechnol 53:73–80. https://doi.org/10.1016/j.nbt.2019.07.004

Warfel KF, Williams A, Wong DA et al (2023) A low-cost, thermostable, cell-free protein synthesis platform for on-demand production of conjugate vaccines. ACS Synth Biol 12:95–107. https://doi.org/10.1021/acssynbio.2c00392

Jiang N, Ding X, Lu Y (2021) Development of a robust Escherichia coli-based cell-free protein synthesis application platform. Biochem Eng J 165:107830. https://doi.org/10.1016/j.bej.2020.107830

Jung JK, Alam KK, Verosloff MS et al (2020) Cell-free biosensors for rapid detection of water contaminants. Nat Biotechnol 38:1451–1459. https://doi.org/10.1038/s41587-020-0571-7

Guzman-Chavez F, Arce A, Adhikari A et al (2022) Constructing cell-free expression systems for low-cost access. ACS Synth Biol 11:1114–1128. https://doi.org/10.1021/acssynbio.1c00342

Pardee K, Green AA, Ferrante T et al (2014) Paper-based synthetic gene networks. Cell 159:940–954. https://doi.org/10.1016/j.cell.2014.10.004

Kim TW, Keum JW, Oh IS et al (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126:554–561. https://doi.org/10.1016/j.jbiotec.2006.05.014

Remmele RL, Krishnan S, Callahan WJ (2012) Development of stable lyophilized protein drug products. Curr Pharm Biotechnol 13:471–496. https://doi.org/10.2174/138920112799361990

Franks F, Jones MN (1987) Biophysics and biochemistry at low temperatures. FEBS Lett 220:391. https://doi.org/10.1016/0014-5793(87)80854-2

Karig DK, Bessling S, Thielen P et al (2017) Preservation of protein expression systems at elevated temperatures for portable therapeutic production. J R Soc Interface 14:20161039. https://doi.org/10.1098/rsif.2016.1039

Kim DM, Choi CY, Ahn JH et al (2006) Development of a rapid and productive cell-free protein synthesis system. Biotechnol Bioprocess Eng 11:235–239. https://doi.org/10.1007/BF02932036

Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 95:27–42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028

Prinz WA, Aslund F, Holmgren A et al (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667. https://doi.org/10.1074/jbc.272.25.15661

Fritz BR, Jamil OK, Jewett MC (2015) Implications of macromolecular crowding and reducing conditions for in vitro ribosome construction. Nucleic Acids Res 43:4774–4784. https://doi.org/10.1093/nar/gkv329

Chae HZ, Uhm TB, Rhee SG (1994) Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci U S A 91:7022–7026. https://doi.org/10.1073/pnas.91.15.7022

Kigawa T, Yabuki T, Matsuda N et al (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5:63–68. https://doi.org/10.1023/B:JSFG.0000029204.57846.7d

Guo X, Zhu Y, Bai L et al (2020) The protection role of magnesium ions on coupled transcription and translation in lyophilized cell-free system. ACS Synth Biol 9:856–863. https://doi.org/10.1021/acssynbio.9b00508

Blackwood AD, Moore BD, Halling PJ (1994) Are associated ions important for biocatalysis in organic media? Biocatalysis 9:269–276. https://doi.org/10.3109/10242429408992126