Use of Mixture Designs to Investigate Contribution of Minor Sex Pheromone Components to Trap Catch of the Carpenterworm Moth, Chilecomadia valdiviana

Journal of Chemical Ecology - Tập 43 - Trang 1046-1055 - 2017
Stephen L. Lapointe1, Wilson Barros-Parada2,3, Eduardo Fuentes-Contreras2, Heidy Herrera4, Takeshi Kinsho5, Yuki Miyake5, Randall P. Niedz1, Jan Bergmann4
1United States Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Ft. Pierce, USA
2Millenium Nucleus Center in Molecular Ecology and Evolutionary Applications in the Agroecosystems (CEM), Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
3Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso Quillota, Chile.
4Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
5Shin-Etsu Chemical Co. Ltd, Tokyo, Japan

Tóm tắt

Field experiments were carried out to study responses of male moths of the carpenterworm, Chilecomadia valdiviana (Lepidoptera: Cossidae), a pest of tree and fruit crops in Chile, to five compounds previously identified from the pheromone glands of females. Previously, attraction of males to the major component, (7Z,10Z)-7,10-hexadecadienal, was clearly demonstrated while the role of the minor components was uncertain due to the use of an experimental design that left large portions of the design space unexplored. We used mixture designs to study the potential contributions to trap catch of the four minor pheromone components produced by C. valdiviana. After systematically exploring the design space described by the five pheromone components, we concluded that the major pheromone component alone is responsible for attraction of male moths in this species. The need for appropriate experimental designs to address the problem of assessing responses to mixtures of semiochemicals in chemical ecology is described. We present an analysis of mixture designs and response surface modeling and an explanation of why this approach is superior to commonly used, but statistically inappropriate, designs.

Tài liệu tham khảo

Allison JD, Cardé RT (2016) Pheromone communication in moths: evolution, behavior, and application. University of California Press, Oakland Angulo AO, Olivares TS (1991) Chilecomadia valdiviana (Philippi) (Lepidoptera: Cossidae) asociado a Ulmus glabra Hudson forma pendula (Laud.) Rehder ("Olmo pendula") en la VIII Región (Concepción, Chile). Bosque 12:67–68 Angulo AO, Olivares TS (2008) Catálogo crítico e ilustrado de los Cossidae de Chile (Lepidoptera: Cossidae). Lepidoptera Novae 1:119–133 Artigas JN (1994) Entomología Económica. Insectos de interés agrícola, forestal, médico y veterinario, vol 2. Ediciones Universidad de Concepción, Chile, pp 479–486 Bestmann HJ, Stransky W, Vostrowsky O (1976) Darstellung lithiumsalzfreier Ylidlösungen mit Natrium-bis(trimethylsilyl)amid als base. Chem Ber 109:1694–1700 Cerda L, Angulo A, Durán A, Olivares T (2000) Insectos asociados a bosques del centro sur de Chile. In: Baldini A, Pancel L (eds) Agentes de daño en el bosque nativo. Editorial Universitaria, Santiago de Chile, pp 201–281 Cornell JA (2002) Experiments with mixtures, Third edn. Wiley, New York Gentili P (1988) Análisis de la distribución geográfica de Cossidae (Lepidoptera: Ditrysia) de la Patagonia andina. Rev Chil Hist Nat 61:191–198 George J, Robbins PS, Alessandro RT, Stelinski LL, Lapointe SL (2016) Formic and acetic acids in degradation products of plant volatiles elicit olfactory and behavioral responses from an insect vector. Chem Senses 41:325–338 Herrera H, Barros-Parada W, Flores MF, Francke W, Fuentes-Contreras E, Rodriguez M, Santis F, Zarbin PHG, Bergmann J (2016) Identification of a novel moth sex pheromone component from Chilecomadia valdiviana (Lepidoptera: Cossidae). J Chem Ecol 42:908–918 Jordan TA, Zhang A, Pfeiffer DG (2013) Blend chemistry and field attraction of commercial sex pheromone lures to grape berry moth (Lepidoptera: Tortricidae), and a nontarget tortricid in vineyards. Environ Entomol 42:558–563 Kliejunas JT, Tkacz BM, Burdsall HH Jr, Denitto GA, Eglitis A, Haugen DA, Wallner WE (2001) Pest risk assessment of the importation into the United States of unprocessed Eucalyptus logs and chips from South America. Gen. TeC. Rep. FPL-GTR-124. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI: U.S., p 134 Knight AL, Barros-Parada W, Bosh D, Escudero-Colomar A, Fuentes-Contreras E, Hernández J, Kim Y, Kovanci OB, Levi A, Lo P, Molinari F, Valls J, Gemeno C (2015) Similar worldwide patterns in the sex pheromone signal and response in the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Bull Entomol Res 105:23–31 Knight AL, Basoalto E, Stelinski LL (2016) Variability in the efficacy of sex pheromone lures for monitoring oriental fruit moth (Lepidoptera: Tortricidae). J Appl Entomol 140:261–267 Lapointe SL, Evens TJ, Niedz RP (2008) Insect diets as mixtures: optimization for a polyphagous weevil. J Insect Physiol 54:1157–1167 Lapointe SL, Stelinksi LL, Evens TJ, Niedz RP, Hall DG, Mafra-Neto A (2009) Sensory imbalance as mechanism of mating disruption in the leafminer Phyllocnistis citrella: elucidation by multivariate geometric designs and response surface models. J Chem Ecol 35:896–903 Lapointe SL, Evens TJ, Niedz RP, Hall DG (2010a) Artificial diet optimized to produce normative adults of Diaprepes abbreviatus. Environ Entomol 39:670–677 Lapointe SL, Niedz RP, Evens TJ (2010b) An artificial diet for Diaprepes abbreviatus optimized for larval survival. Fla Entomol 93:56–62 Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product in optimization using designed experiments, 4th edn. John Wiley & Sons, Inc., New York Niedz RP, Evens TJ (2016) Design of experiments (DOE) – history, concepts, and relevance to in vitro culture. In Vitro Cell Dev Biol Plant 52:547–562 Petersen JG (1988) Chilecomadia valdiviana (Philippi) (Lepidoptera: Cossidae), asociado a Nothofagus pumilio (Poepp. et Endl) Krasser (Lenga) en la Región de Magallanes. An Inst de la Patagonia 18:51–55 Piepel GF (1983) Defining consistent constraint regions in mixture experiments. Technometrics 25:97–101 Prado E (1991) Artrópodos y sus enemigos naturales asociados a plantas cultivadas en Chile. Boletín Técnico N° 169. Instituto de Investigaciones Agropecuarias, La Platina, p 203 Ripa R, Larral P (2008) Manejo de plagas en paltos y cítricos. Colección Libros INIA N° 23: La Cruz, Chile Roelofs WL (1978) Threshold hypothesis for pheromone perception. J Chem Ecol 4:685–699 Scheffé H (1958) Experiments with Mixtures. J Roy Stat Soc Series B 20:344–360 Scheffé H (1963) Simplex-centroid designs for experiments with mixtures. J Roy Stat Soc Series B 25:235–263 Smith WF (2005) Experimental Design for Formulation. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia Stuhl CJ, Cicero L, Sivinski J, Teal P, Lapointe S, Paranhos BJ, Aluja M (2011) Longevity of multiple species of tephritid (Diptera) fruit fly parasitoids (Hymenoptera: Braconidae: Opiinae) provided exotic and sympatric-fruit based diets. J Insect Physiol 57:1463–1470 Trimble RM, Marshall DB (2008) Relative attractiveness of incomplete and complete blends of synthetic pheromone to male obliquebanded leafroller (Lepidoptera: Tortricidae) moths in a flight tunnel and in apple orchards: implications for sex pheromone-mediated mating disruption of this species. Environ Entomol 37:366–373 Wang H-L, Svensson GP, Rosenberg O, Bengtsson M, Jirle EV, Löfstedt C (2010) Identification of the sex pheromone of the spruce seed moth, Cydia strobilella L. (Lepidoptera: Tortricidae). J. Chem. Ecol 36:305–313 Weisberg S (1985) Applied Linear Regression, 2nd edn. Wiley & Sons, New York Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100