Uridine diphosphate glucuronosyl transferase 1A (UGT1A1) promoter polymorphism in young patients with sickle cell anaemia: report of the first cohort study from Nigeria

Springer Science and Business Media LLC - Tập 20 - Trang 1-8 - 2019
Oladele Simeon Olatunya1,2, Dulcineia Martins Albuquerque1, Ganiyu Olusola Akanbi3, Olufunso Simisola Aduayi3, Adekunle Bamidele Taiwo4, Opeyemi Ayodeji Faboya5, Tolorunju Segun Kayode6, Daniela Pinheiro Leonardo1, Adekunle Adekile7, Fernando Ferreira Costa1
1Hematology and Hemotherapy Center (Hemocentro), University of Campinas (UNICAMP), Campinas, Brazil
2Department of Paediatrics, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
3Department of Radiology, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
4Department of Paediatrics, Ekiti State University Teaching Hospital, Ado Ekiti, Nigeria
5Department of Medical Biochemistry, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
6Department of Chemical Pathology, Ekiti State University Teaching Hospital, Ado Ekiti, Nigeria
7Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait

Tóm tắt

(TA) n repeat sequence (rs8175347) of UGT1A1 gene promoter polymorphism is associated with serum bilirubin levels and gallstones among different sickle cell anaemia (SCA) populations. There are no data on UGT1A1 polymorphisms and their impact on Nigerian SCA patients. In this study, we determined the distribution of the UGT1A1 (TA) n genotypes among a group of young Nigerian SCA patients and healthy controls. In addition, the influence of UGT1A1 (TA) n genotypes on the laboratory and clinical events among the patients was determined. The distribution of the UGT1A1 (TA) n genotypes among 101 young Nigerian SCA patients and 64 normal appropriate controls were determined and studied. The UGT1A1 (TA) n genotypes were further classified into subgroups and used to differentiate the clinical events and laboratory parameters of the patients. Four (TA) n alleles:(TA)5, 6, 7, and 8 were found. These were associated with 10 genotypes: TA5/5, 5/6, 5/7, 5/8, 6/6, 6/7, 6/8, 7/7, 7/8, 8/8. The normal (wild-type)-(TA) 6/6), low- (TA) 7/7, 7/8, 8/8), intermediate- (TA) 5/7, 5/8, 6/7, 6/8), and high-activity (TA) 5/5, 5/6,) genotypes were found in 24.8, 24.8, 41.5, and 8.9% patients and 20.3, 15.6, 61, and 3.1% controls respectively. The general genotype distribution of the patients and control group were not significantly different. There were significant differences in serum bilirubin and lactate dehydrogenase (LDH) of the patients when differentiated by the UGT1A1 (TA) n genotypes (p<0.05). Asymptomatic gallstones were found in 5.9% of patients and were significantly of the low-activity genotypes sub-group 5 (20%) vs 1(1.3%) p = 0.0033. Although, bilirubin and fetal hemoglobin (HbF) of patients with gallstones were significantly different from those without gallstone, only the serum bilirubin was associated with UGT1A1 (TA) n genotypes on multivariate analysis (p < 0.0001). This study highlights the contribution of UGT1A1 polymorphisms, a non-globin genetic factor, to the laboratory and clinical manifestations of young Nigerian SCA patients for the first time. It also shows that children with co-inheritance of low UGT1A1 (TA) n affinity genotypes may be at risk of gallstone, hence the need to follow them up.

Tài liệu tham khảo

Rees DC, Williams TN, Gladwin MT. Sickle cell disease. Lancet. 2010;376:2018–31. Carpenter SL, Lieff S, Howard TA, Eggleston B, Ware RE. UGT1A1 promoter polymorphisms and the development of hyperbilirubinemia and gallbladder disease in children with sickle cell anemia. Am J Hematol. 2008;83:800–3. Stocker R, Yamamoto Y, McDonagh A, Glazer A. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–6. Schwertner HA, Vitek L. Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin. Atherosclerosis. 2008;198:1–11. Italia KY, Jijina FF, Jain D, Merchant R, Nadkarni AH, Mukherjee M, et al. The effect of UGT1A1 promoter polymorphism on bilirubin response to hydroxyurea therapy in haemoglobinopathies. Clin Biochem. 2010;43:1329–32. Ware R, Filston HC, Schultz WH, Kinney TR. Elective cholecystectomy in young patients with sickle hemoglobinopathies. Ann Surg. 1988;208:17–22. Haberkern CM, Neumayr LD, Orringer EP, et al. Cholecystectomy in sickle cell anemia patients: perioperative outcome of 364 cases from the national preoperative transfusion study. Blood. 1997;89:1533–42. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J. 2003;3(3):136–58. Horsfall LJ, Zeitlyn D, Tarekegn A, Bekele E, Thomas MG, Bradman N, et al. Prevalence of clinically relevant UGT1A1 alleles and haplotypes in African population. Ann Hum Genet. 2011;75:236–46. Kadakol A, Ghosh SS, Sappal BS, et al. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Criggler-Najar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat. 2000;16:297–306. Chaouch L, Talbi E, Moumi I, Chaabene AB, Kalai M, Chaouachi D, et al. Early complication in sickle anemia children due to A (TA) n TAA polymorphism at the promoter of UGT1A1 gene. Dis Markers. 2013;35(2):67–72. Diakwu-Akinwumi IN, Abubakar SB, Adegoke SA, Adeleke S, Adewoye O, Adeyemo T, et al. Blood transfusion services for patients with sickle cell disease in Nigeria. Int Health. 2016;8(5):330–5. Ballas SK, Lieff S, Benjamin LJ, Dampier CD, Heeney MM, Hope C. Definitions of phenotypic manifestations of sicle cell disease. Am J Hematol. 2010;85:6–13. Miranda SRP, Fonseca SF, Figueiredo MS, Grotto HZW, Kimura EM, Saad STO, et al. Hb Köln [α2β298(FG5) val-met] identified by DNA analysis in a Brazilian family. Braz J Genet. 1997;20(4):745–8. Mezzacappa MA, Facchini FP, Pinto AC, Cassone AEL, Souza DS, Bezerra MAC, et al. Clinical and genetic risk factors for moderate hyperbilirubinemia in Brazilian newborn infants. J Perinatol. 2010;30(12):819–26. Abou Tayoun AN, de Abreu FB, Lefferts JA, Tsongalis GJ. A clinical PCR fragment analysis assay for TA repeat sizing in the UGT1A1 promoter region. Clin Chim Acta. 2013;422:1–4. Hamad Z, Aljedai A, Halwani R, Alsultan A. UGT1A1promoter polymorphism associated with serum bilirubin level in Saudi patients with sickle cell disease. Ann Saudi Med. 2013;33(4):372–6. Haverfield EV, McKenzie CA, Forrester, et al. UGT1A1 variation and gallstone formation in sickle cell disease. Blood. 2005;105(3):968–72. Damanhouri GA, Jarullah J, Marouf S, Hindawi SI, Mushtaq G, Kamal MA. Clinical biomarkers in sickle cell disease. Saudi J Biol Sci. 2015;22:24–31. Kato GJ, McGowan V, Machado RF, Little JA, Taylor VIJ, et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 2006;107(6):2279–85. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase1 (UGT1A1) promoter: a balanced polymorphism for the regulation of bilirubin metabolism? Proc Natl Acad Sci. 1998;95:8170–4. Premawardhena A, Fisher CA, Liu YT, et al. The global distribution of length polymorphisms of the promoters of the glucuronoslytransferase 1 gene (UGT1A1): hematologic and evolutionary implications. Blood Cells Mol Dis. 2003;31:98–101. Fertrin KY, Goncalves MS, Saad STO, Costa FF. Frequencies of UDP-Glucuronosyltransferase 1 (UGT1A1) gene promoter polymorphisms among distinct groups from Brazil. Am J Med Genet. 2002;108:117–9. Fertrin KY, Melo MB, Assis AM, Saad STO, Costa FF. UDP-glucuronosyltransferase 1 gene promoter is associated with increased serum bilirubin levels and cholecystectomy in patients with sickle cell anemia. Clin Genet. 2003;64:160–2. Azevedo LA, Santin AP, Wagner SC, Zaleski CF, Bock H, Saiva-Pereira ML, et al. Prevalence of UGT1A1 gene polymorphism in patients with haemolytic anemia in southern Brazil. Genet Test Mol Biomarkers. 2011;15(1&2):107–10. AlFadhil S, Al-Jafer H, Hadi M, Al-Mutairi M, Nizam R. The effect of UGT1A1 promoter polymorphism in the development of hyperbilrubinemia and cholelithiasis in hemoglobinopathy patients. PLoS One. 2013;8(10):e77681. https://doi.org/10.1371/journal.pone.0077681. Adekile A, Kutlar F, McKie K, Addington A, Elam D, Holley L, et al. The influence of uridine diphosphate glucuronosyl transferase 1A promoter polymorphisms, βs-globin gene haplotype and co-inherited α-thalassemia trait and HbF on steady state serum bilirubin levels in sickle cell anemia. Eur J Haematol. 2005;75:150–5. Huo D, Kim H, Adebamowo CA, Ogundiran TO, Akang E, et al. Genetic polymorphisms in uridine diphosphoglucuronosyltransferase 1A1 and cancer risks in Africans. Breast Cancer Res Treat. 2008;110:367–76. Kaplan M, Slusher T, Renbaum P, Essiet DF, Pam S, Levy-Lahad E, et al. (TA) n UDP-Glucuronosyltransferase1a1 promoter polymorphism in Nigerian neonates. Pediatr Res. 2008;63:109–11. Chaar V, Keclard L, Diara JP, Leturdu C, Elion J, Krishnamoorthy R, et al. Association of UGT1A1 polymorphism with prevalence and age of onset of cholelithiasis in sickle cell anemia. Haematological. 2005;90(2):188–93. Adekile AD, Makanjuola D. Ultrasonography in children with sickle cell anemia. Niger J Paediatr. 1983;10:35–8. Nzeh DA, Adedoyin MA. Sonographic pattern of gallbladder disease in children with sickle cell anemia. Pediatr Radiol. 1989;19(5):290–2. Odunvbun ME, Adeyekun AA. Ultrasonic assessment of the prevalence of gallstones in sickle cell disease children seen at the University of Benin Teaching Hospital, Benin City, Nigeria. Niger J Paed. 2014;41(4):370–4. Darko R, Rodrigues OP, Oliver-Commey JO, Kotei CN. Gallstones in Ghanian children with sickle cell disease. West Afr J Med. 2005;24(4):295–8. Longo-Mbenza B, Ngiyulu R, Kizunda P, Kaluila M, Bikangi N. Gallbladder disease in young Congolese with sickle cell anemia: an ultrasound survey. J Trop Pediatr. 2004;5:73–7. Attalla BI. Sonographic findings in Sudanese children with sickle cell anemia. J Diagn Med Sonogr. 2010;26:276–80. Attalla BAI, Karrar ZA, Ibnouf G, Mohamed AO, Abdelwahab O, Nasir EM, et al. Outcome of cholelithiasis in Sudanese children with sickle cell anemia after a 13 years follow up. Afr Health Sci. 2013;13(1):154–9. Russo-Mancuso G, Romeo MA, Guardabasso V, Schiliro G. Survey of sickle cell disease in Italy. Haematologica. 1998;83:875–81. Passon RG, Howard TA, Zimmerman SA, Schultz WH, Ware RE. Influence of bilirubin Uridine Diphosphate Glucuronoslytransferase 1A promoter polymorphisms on serum bilirubin levels and cholelithiasis in children with sickle cell anemia. J Pediatr HematolOncol. 2001;23:448–51. Gumeiro APS, Bellomo-Brandao MA, Costal-Pinto EAL. Gallstones in children with sickle cell disease followed up at a Brazillian hematology center. Arq Gastroenterol. 2008;45(4):313–8. Martins R, Morais A, Dias A, Soares I, Rolao C, Ducla-Soares JL, et al. Eearly modification of sickle cell disease clinical course by UDP-glucuronosyltransferase 1A1 gene promoter polymorphism. J Hum Genet. 2008;53(6):524–8. Milton JN, Sebastiani P, Solovieff N, Hartley SW, Bhatnagar P, Arking DE, et al. A genome-wide association study of total bilirubin and cholelithiasis risk in sickle cell anemia. PLoS One. 2012;7(4):e34741. https://doi.org/10.1371/journal.pone.0034741. Kumar S, Guha M, Choubey V, Maity P, Srivastava K, Puri S, et al. Bilrubin inhibits plasmodium falciparum growth through the generation of reactive oxygen species. Free Radic Biol Med. 2008;44:602–13.