Uric acid, an important screening tool to detect inborn errors of metabolism: a case series

Springer Science and Business Media LLC - Tập 10 - Trang 1-6 - 2017
Eresha Jasinge1, Grace Angeline Malarnangai Kularatnam1, Hewa Warawitage Dilanthi1, Dinesha Maduri Vidanapathirana1, Kandana Liyanage Subhashinie Priyadarshika Kapilani Menike Jayasena1, Nambage Dona Priyani Dhammika Chandrasiri1, Neluwa Liyanage Ruwan Indika1, Pyara Dilani Ratnayake2, Vindya Nandani Gunasekara3, Lynette Dianne Fairbanks4, Blanka Stiburkova5
1Department of Chemical Pathology, Lady Ridgeway Hospital for Children, Colombo 8, Sri Lanka
2Neurology Unit, Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
3Nephrology Unit, Lady Ridgeway Hospital for Children, Colombo, Sri Lanka
4Purine Research Laboratory, St Thomas Hospital, London, UK
5Institute of Rheumatology, Prague, Czech Republic and Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic

Tóm tắt

Uric acid is the metabolic end product of purine metabolism in humans. Altered serum and urine uric acid level (both above and below the reference ranges) is an indispensable marker in detecting rare inborn errors of metabolism. We describe different case scenarios of 4 Sri Lankan patients related to abnormal uric acid levels in blood and urine. A one-and-half-year-old boy was investigated for haematuria and a calculus in the bladder. Xanthine crystals were seen in microscopic examination of urine sediment. Low uric acid concentrations in serum and low urinary fractional excretion of uric acid associated with high urinary excretion of xanthine and hypoxanthine were compatible with xanthine oxidase deficiency. An 8-month-old boy presented with intractable seizures, feeding difficulties, screaming episodes, microcephaly, facial dysmorphism and severe neuro developmental delay. Low uric acid level in serum, low fractional excretion of uric acid and radiological findings were consistent with possible molybdenum cofactor deficiency. Diagnosis was confirmed by elevated levels of xanthine, hypoxanthine and sulfocysteine levels in urine. A 3-year-10-month-old boy presented with global developmental delay, failure to thrive, dystonia and self-destructive behaviour. High uric acid levels in serum, increased fractional excretion of uric acid and absent hypoxanthine–guanine phosphoribosyltransferase enzyme level confirmed the diagnosis of Lesch–Nyhan syndrome. A 9-year-old boy was investigated for lower abdominal pain, gross haematuria and right renal calculus. Low uric acid level in serum and increased fractional excretion of uric acid pointed towards hereditary renal hypouricaemia which was confirmed by genetic studies. Abnormal uric acid level in blood and urine is a valuable tool in screening for clinical conditions related to derangement of the nucleic acid metabolic pathway.

Tài liệu tham khảo

Mraz M, Hurba O, Bartl J, Dolezel Z, Marinaki A, Fairbanks L, Stiburkova B. Modern diagnostic approach to hereditary xanthinuria. Urolithiasis. 2015;43(1):61–7. Stiburkova B, Sebesta I, Ichida K, Nakamura M, Hulkova H, Krylov V, et al. Novel allelic variant and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: biochemical, genetics and functional analysis. Eur J Hum Genet. 2013;21(10):1067–73. Van Gennip AH. Defects in metabolism of purines and pyrimidines. Nederlands Tijdschrift voor Klinische Chemie. 1999;24:171–5. Simmonds H, Reiter S, Nishino T. Hereditary xanthinuria. Orphanet Encyclopedia. 2003. https://www.researchgate.net/publication/285222077_Hereditary_xanthinuria. Accessed July 2016. Reiter S, Simmonds HA, Zollner N, Braun SL, Knedel M. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin Chim Acta. 1990;187(3):221–34. Johnson JL, Duran M. Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3163–77. Vijayakumar K, Gunny R, Grünewald S, Carr L, Chong KW, DeVile C, et al. Clinical neuroimaging features and outcome in molybdenum cofactor deficiency. Pediatr Neurol. 2011;45(4):246–52. Macaya A, Brunso L, Fernandez-Castillo N, Arranz JA, Ginjaar HB, Cuenca-Leon E, et al. Molybdenum cofactor deficiency presenting as neonatal hyperekplexia: a clinical, biochemical and genetic study. Neuropediatrics. 2005;36(06):389–94. Van den Berghe G, Vincent MF, Marie S. Disorders of purine and pyrimidine metabolism. In: Fernandes J, Saudubray JM, van den Berghe G, Walter JH, editors. Inborn metabolic diseases. Springer: Berlin; 2006. p. 433–49. Raivio KO, Saksela M, Lapatto R. Xanthine oxidoreductase-role in human pathophysiology and in hereditary xanthinuria. In: Scriver CR, Baeudet Al, Sly WS, Valle D eds. The metabolic and molecular bases of inherited disease. 8th ed. New York: Mc-Graw Hill; 2001. p. 2639-52. Simoni RE, Gomes LNLF, Scalco FB, Oliveira CPH, Neto FRA, de Oliveira MLC. Uric acid changes in urine and plasma: an effective tool in screening for purine inborn errors of metabolism and other pathological conditions. J Inherit Metab Dis. 2007;30(3):295–309. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52. Gabrikova D, Bernasovska J, Sokolova J, Stiburkova B. High frequency of SLC22A12 variants causing renal hypouricemia 1 in the Czech and Slovak Roma population; simple and rapid detection method by allele-specific polymerase chain reaction. Urolithiasis. 2015;43(5):441–5. Sebesta I, Stiburkova B, Bartl J, Ichida K, Hosoyamada M, Taylor J, et al. Diagnostic tests for primary renal hypouricemia. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1112–6. Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83(6):744–51. Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21(1):64–72. Ohta T, Sakano T, Igarashi T, Itami N, Ogawa T, Group ARFAwRHR. Exercise-induced acute renal failure associated with renal hypouricaemia: results of a questionnaire-based survey in Japan. Nephrol Dial Transpl. 2004;19(6):1447–53. Jinnah HA, Friedmann T. Lesch–Nyhan disease and its variants. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 2537–60. Torres RJ, Puig JG, Jinnah HA. Update on the phenotypic spectrum of Lesch–Nyhan disease and its attenuated variants. Curr Rheumatol Rep. 2012;14(2):189–94. Jinnah HA. Lesch–Nyhan disease: from mechanism to model and back again. Dis Model Mech. 2009;2(3–4):116–21.