Uptake of Chlorin e6 Photosensitizer by Polystyrene-Diphenyloxazole-Poly(N-Isopropylacrylamide) Hybrid Nanosystem Studied by Electronic Excitation Energy Transfer
Tóm tắt
Polystyrene (PS)-diphenyloxazole (PPO) nanoparticles with attached cross-linked poly-N-isopropylacrylamide (PNIPAM) chains were obtained resulting in PS-PPO-PNIPAM hybrid nanosystems (NS). Fluorescence spectra of chlorin e6 added to PS-PPO-PNIPAM hybrid NS revealed electronic excitation energy transfer (EEET) from PS matrix and encapsulated PPO to chlorin e6. EEET efficiency increased strongly during 1 h after chlorin e6 addition, indicating that uptake of chlorin e6 by PNIPAM part of hybrid NS still proceeds during this time. Heating of PS-PPO-PNIPAM-chlorin e6 NS from 21 to 39 °C results in an enhancement of EEET efficiency; this is consistent with PNIPAM conformation transition that reduces the distance between PS-PPO donors and chlorin e6 acceptors. Meanwhile, a relatively small part of chlorin e6 present in the solution is bound by PNIPAM; thus, further studies in this direction are necessary.
Tài liệu tham khảo
Wilson BC (2002) Photodynamic therapy for cancer: principles. Can J Gastroenterol 16:393–396
Chen W, Zhang J (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J NanoSci Nanotech 6:1159–1166
Ma L, Zou X, Bui B, Chen W, Song KH, Solberg T (2014) X-ray excited ZnS: Cu, Co afterglow nanoparticles for photodynamic activation. Appl Phys Lett 105:013702
Zou X, Yao M, Ma L, Hossu M, Han X, Juzenas P, Chen W (2014) X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine 9:2339–2351
Chen H, Wang GD, Chuang YJ, Zhen Z, Chen X, Biddinger P, Hao Z, Liu F, Shen B, Pan Z, Xie J (2015) Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. NanoLett 15:2249–2256
Bulin A-L, Truillet C, Chouikrat R, Lux F, Frochot C, Amans D, Ledoux G, Tillement O, Perriat P, Barberi-Heyob M, Dujardin C (2013) X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. J Phys Chem C 117:21583–21589
Kaščáková S, Giuliani A, Lacerda S, Pallier A, Mercère P, Tóth É, Réfrégiers M (2015) X-ray induced radiophotodynamic therapy (RPDT) using lanthanide micelles: beyond depth limitations. Nano Res 8:2373–2379
Clement S, Deng W, Camilleri E, Wilson BC, Goldys EM (2016) X-ray induced singlet oxygen generation by nanoparticle photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Sci Rep 6:19954
Yefimova SL, Tkacheva TN, Maksimchuk PO, Bespalova II, Hubenko KO, Klochkov VK, Sorokin AV, Malyukin YV (2017) GdVO4:Eu3+ nanoparticles––methylene blue complexes for PDT: electronic excitation energy transfer study. J Luminesc 192:975–981
Cooper DR, Kudinov K, Tyagi P, Hill CK, Bradforth SE, Nadeau JL (2014) Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules. Phys Chem Chem Phys 16:12441–12453
Losytskyy MY, Kuzmenko LV, Shcherbakov OB, Gamaleia NF, Marynin AI, Yashchuk VM (2017) Energy transfer in Ce0.85Tb0.15F3 nanoparticles-CTAB shell-chlorin e6 system. Nanoscale Res Lett 12:294
Chen M-H, Jenh Y-J, Wu S-K, Chen Y-S, Hanagata N, Lin F-H (2017) Non-invasive Photodynamic Therapy in Brain Cancer by Use of Tb3+-Doped LaF3 Nanoparticles in Combination with Photosensitizer Through X-ray Irradiation: A Proof-of-Concept Study. Nanoscale Res Lett 12:62
Kokotov S, Lewis A, Neumann R, Amrusi S (1994) X-ray induced visible luminescence of porphyrins. Photochem Photobiol 59:385–387
Losytskyy M, Vretik L, Nikolaeva O, Getya D, Marynin A, Yashchuk V (2015) Energy transfer in polystyrene nanoparticles with encapsulated 2,5-diphenyloxazole. French-Ukrainian J Chem 3:119–124
Losytskyy MY, Vretik LO, Nikolaeva OA, Marynin AI, Gamaleya NF, Yashchuk VM (2016) Polystyrene-diphenyloxazole-chlorin e6 nanosystem for PDT: energy transfer study. Mol Cryst Liq Cryst 639:169–176
Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154
Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823
Chumachenko V, Kutsevol N, Harahuts Y, Rawiso M, Marinin A, Bulavin L (2017) Star-like dextran-graft-PNiPAM copolymers. Effect of internal molecular structure on the phase transition. J Mol Liq 235:77–82
Zhang F, Wang C-C (2008) Preparation of thermoresponsive core-shell polymeric microspheres and hollow PNIPAM microgels. Colloid Polym Sci 286:889–895
Chen J, Zhang P, Yu X, Li X, Tao H, Yi P (2011) Fabrication of novel polymer nanoparticle-based fluorescence resonance energy transfer systems and their tunable fluorescence properties. J Macromolecular Sci Part A 48:219–226