Khám Phá Các Cơ Chế Thần Kinh Độc Tiềm Năng: Kích Hoạt Tín Hiệu CDK5-p25 Do Pb Gây Ra Trong Sự Phát Triển Của Bệnh Alzheimer, Nhấn Mạnh Việc Ức Chế CDK5 Và Sự Hình Thành Các Chất T毒性 p25

Molecular Neurobiology - Trang 1-14 - 2023
Murumulla Lokesh1, Lakshmi Jaya Madhuri Bandaru1, Ajumeera Rajanna1, J. Sreenivasa Rao1, Suresh Challa1
1Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, India

Tóm tắt

Bệnh Alzheimer (AD) là một rối loạn thoái hóa thần kinh phức tạp với nguyên nhân chịu ảnh hưởng bởi nhiều yếu tố di truyền và môi trường. Các kim loại nặng, chẳng hạn như chì (Pb), đã được chỉ ra là có liên quan đến quá trình bệnh lý của AD, nhưng các cơ chế tiềm ẩn vẫn chưa được hiểu rõ. Nghiên cứu này điều tra vai trò tiềm tàng gây thoái hóa thần kinh của Pb và các peptide amyloid β (1–40 và 25–35) thông qua sự tương tác của chúng với kinase phụ thuộc cyclin 5 (CDK5) và chất kích hoạt của nó, p25, nhằm làm sáng tỏ cơ sở phân tử của độc tố thần kinh do Pb gây ra trong các tế bào thần kinh. Để đạt được điều này, một chất ức chế CDK5 đã được sử dụng để ức chế chọn lọc hoạt động của CDK5 và nghiên cứu tác động của nó đối với sự thoái hóa thần kinh. Kết quả cho thấy tiếp xúc với Pb dẫn đến sự gia tăng hấp thụ Pb (56,7% tại 15 μM Pb) và sự rối loạn trong nồng độ canxi nội bào (tăng 19,6% sau điều trị Pb). Các kết quả cũng chỉ ra sự giảm đáng kể trong khả năng chống oxy hóa tổng thể (giảm 88,6% sau điều trị Pb) và cũng có sự gia tăng trong sự cacbon hóa protein (tăng 26,2% sau sự kết hợp điều trị Pb và Aβp), cho thấy thiệt hại oxy hóa, gợi ý về việc phòng vệ tế bào bị suy giảm trước căng thẳng oxy hóa và tăng thiệt hại DNA do oxy hóa (178 pg/ml và 182 pg/ml của 8-OH-dG sau điều trị Pb và All). Thêm vào đó, những rối loạn trong nồng độ calpain, p25-35 và CDK5 đã được quan sát và các dấu hiệu liên quan đến chuyển hóa chất chống oxy hóa (phospho-Peroxiredoxin 1), phản ứng với tổn thương DNA (phospho-ATM và phospho-p53), và sự phá hủy màng nhân (phospho-lamin A/C) cũng được ghi nhận, hỗ trợ vai trò của tín hiệu CDK5-p25 do Pb gây ra trong sự phát triển của AD. Những phát hiện này làm sáng tỏ các sự kiện phân tử phức tạp đứng sau độc tính thần kinh gây ra bởi Pb và cung cấp cái nhìn quý giá vào các cơ chế góp phần vào sự phát triển của AD.

Từ khóa

#Bệnh Alzheimer #độc tính thần kinh #chì #kinase phụ thuộc cyclin #CDK5 #p25 #thiệt hại oxy hóa

Tài liệu tham khảo

Ayyalasomayajula N, Suresh C (2018) Mechanistic comparison of current pharmacological treatments and novel phytochemicals to target amyloid peptides in Alzheimer’s and neurodegenerative diseases. Nutr Neurosci 21:682–694. https://doi.org/10.1080/1028415X.2017.1345425 Murumulla L, Bandaru LJM, Challa S (2023) Heavy metal mediated progressive degeneration and its noxious effects on brain microenvironment. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03778-x Balali-Mood M, Naseri K, Tahergorabi Z (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972 Bandaru LJM, Ayyalasomayajula N, Murumulla L (2022) Defective mitophagy and induction of apoptosis by the depleted levels of PINK1 and Parkin in Pb and β-amyloid peptide induced toxicity. Toxicol Mech Methods 32:559–568. https://doi.org/10.1080/15376516.2022.2054749 Bandaru LJM, Ayyalasomayajula N, Murumulla L, Challa S (2022) Mechanisms associated with the dysregulation of mitochondrial function due to lead exposure and possible implications on the development of Alzheimer’s disease. Biometals an Int J role Met ions Biol Biochem Med 35:1–25. https://doi.org/10.1007/s10534-021-00360-7 Joshi M, Joshi S, Khambete M, Degani M (2023) Role of calcium dysregulation in Alzheimer’s disease and its therapeutic implications. Chem Biol Drug Des 101:453–468. https://doi.org/10.1111/cbdd.14175 Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF (2023) Role of calcium modulation in the pathophysiology and treatment of Alzheimer’s disease. Int J Mol Sci 24. https://doi.org/10.3390/ijms24109067 Xie J, Wu S, Szadowski H (2023) Developmental Pb exposure increases AD risk via altered intracellular Ca(2+) homeostasis in hiPSC-derived cortical neurons. J Biol Chem:105023. https://doi.org/10.1016/j.jbc.2023.105023 Muyllaert D, Terwel D, Kremer A et al (2008) Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. Am J Pathol 172:470–485. https://doi.org/10.2353/ajpath.2008.070693 Cheung ZH, Ip NY (2012) Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22:169–175. https://doi.org/10.1016/j.tcb.2011.11.003 Ayyalasomayajula N, Bandaru M, Dixit PK et al (2020) Inactivation of GAP-43 due to the depletion of cellular calcium by the Pb and amyloid peptide induced toxicity: an in vitro approach. Chem Biol Interact 316:108927. https://doi.org/10.1016/j.cbi.2019.108927 Neelima A, Rajanna A, Bhanuprakash RG et al (2017) Deleterious effects of combination of lead and β-Amyloid peptides in inducing apoptosis and altering cell cycle in human neuroblastoma cells. Interdiscip Toxicol 10:93–98. https://doi.org/10.1515/intox-2017-0015 Suresh C, Johnson J, Mohan R, Chetty CS (2012) Synergistic effects of amyloid peptides and lead on human neuroblastoma cells. Cell Mol Biol Lett 17:408–421. https://doi.org/10.2478/s11658-012-0018-3 Gao Q, Dai Z, Zhang S et al (2020) Interaction of Sp1 and APP promoter elucidates a mechanism for Pb(2+) caused neurodegeneration. Arch Biochem Biophys 681:108265. https://doi.org/10.1016/j.abb.2020.108265 Metryka E, Kupnicka P, Kapczuk P et al (2021) Lead (Pb) Accumulation in human THP-1 monocytes/macrophages in vitro and the influence on cell apoptosis. Biol Trace Elem Res 199:955–967. https://doi.org/10.1007/s12011-020-02215-7 Cascella R, Cecchi C (2021) Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. Int J Mol Sci 22. https://doi.org/10.3390/ijms22094914 Chen W-B, Wang Y-X, Wang H-G et al (2023) Role of TPEN in amyloid-β(25-35)-induced neuronal damage correlating with recovery of intracellular Zn(2+) and intracellular Ca(2+) overloading. Mol Neurobiol 60:4232–4245. https://doi.org/10.1007/s12035-023-03322-x Chin JH, Tse FW, Harris K, Jhamandas JH (2006) Beta-amyloid enhances intracellular calcium rises mediated by repeated activation of intracellular calcium stores and nicotinic receptors in acutely dissociated rat basal forebrain neurons. Brain Cell Biol 35:173–186. https://doi.org/10.1007/s11068-007-9010-7 Feng C, Liu S, Zhou F et al (2019) Oxidative stress in the neurodegenerative brain following lifetime exposure to lead in rats: changes in lifespan profiles. Toxicology 411:101–109. https://doi.org/10.1016/j.tox.2018.11.003 Peng J-C, Deng Y, Song H-X et al (2023) Protective effects of sodium para-aminosalicylic acid on lead and cadmium co-exposure in SH-SY5Y cells. Brain Sci 13. https://doi.org/10.3390/brainsci13030382 Saeed K, Shah SA, Ullah R et al (2020) Quinovic acid impedes cholesterol dyshomeostasis, oxidative stress, and neurodegeneration in an amyloid-β-induced mouse model. Oxid Med Cell Longev 2020:9523758. https://doi.org/10.1155/2020/9523758 Karapetyan G, Fereshetyan K, Harutyunyan H, Yenkoyan K (2022) The synergy of β amyloid 1-42 and oxidative stress in the development of Alzheimer’s disease-like neurodegeneration of hippocampal cells. Sci Rep 12:17883. https://doi.org/10.1038/s41598-022-22761-5 Bandaru LJM, Murumulla L, Challa S et al (2023) Exposure of combination of environmental pollutant, lead (Pb) and β-amyloid peptides causes mitochondrial dysfunction and oxidative stress in human neuronal cells. J Bioenerg Biomembr 55:79–89. https://doi.org/10.1007/s10863-023-09956-9 Mancini G, Martins WC, de Oliveira J et al (2020) Atorvastatin improves mitochondrial function and prevents oxidative stress in hippocampus following amyloid-β(1-40) intracerebroventricular administration in mice. Mol Neurobiol 57:4187–4201. https://doi.org/10.1007/s12035-020-02026-w Bergkvist L, Du Z, Elovsson G et al (2020) Mapping pathogenic processes contributing to neurodegeneration in drosophila models of Alzheimer’s disease. FEBS Open Bio 10:338–350. https://doi.org/10.1002/2211-5463.12773 Das M, Devi KP (2021) Dihydroactinidiolide regulates Nrf2/HO-1 expression and inhibits caspase-3/Bax pathway to protect SH-SY5Y human neuroblastoma cells from oxidative stress induced neuronal apoptosis. Neurotoxicology 84:53–63. https://doi.org/10.1016/j.neuro.2021.02.006 Mahaman YAR, Huang F, Kessete Afewerky H et al (2019) Involvement of calpain in the neuropathogenesis of Alzheimer’s disease. Med Res Rev 39:608–630. https://doi.org/10.1002/med.21534 Lee MS, Kwon YT, Li M et al (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364. https://doi.org/10.1038/35012636 Tanqueiro SR, Ramalho RM, Rodrigues TM et al (2018) Inhibition of NMDA receptors prevents the loss of BDNF function induced by amyloid β. Front Pharmacol 9:237. https://doi.org/10.3389/fphar.2018.00237 Kiss E, Groeneweg F, Gorgas K et al (2020) Amyloid-β fosters p35/CDK5 signaling contributing to changes of inhibitory synapses in early stages of cerebral amyloidosis. J Alzheimers Dis 74:1167–1187. https://doi.org/10.3233/JAD-190976 Ai J, Wang H, Chu P et al (2021) The neuroprotective effects of phosphocreatine on amyloid beta 25-35-induced differentiated neuronal cell death through inhibition of AKT /GSK-3β /Tau/APP /CDK5 pathways in vivo and vitro. Free Radic Biol Med 162:181–190. https://doi.org/10.1016/j.freeradbiomed.2020.10.003 Ding J-J, Zou R-X, He H-M et al (2018) Pb inhibits hippocampal synaptic transmission via cyclin-dependent kinase-5 dependent Synapsin 1 phosphorylation. Toxicol Lett 296:125–131. https://doi.org/10.1016/j.toxlet.2018.08.009 Tuo Q-Z, Liuyang Z-Y, Lei P et al (2018) Zinc induces CDK5 activation and neuronal death through CDK5-Tyr15 phosphorylation in ischemic stroke. Cell Death Dis 9:870. https://doi.org/10.1038/s41419-018-0929-7 Sun K-H, de Pablo Y, Vincent F, Shah K (2008) Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 107:265–278. https://doi.org/10.1111/j.1471-4159.2008.05616.x Park J, Choi H, Min J-S et al (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132:687–702. https://doi.org/10.1111/jnc.12984 Qu D, Rashidian J, Mount MP et al (2007) Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron 55:37–52. https://doi.org/10.1016/j.neuron.2007.05.033 Zhang L, Liu W, Szumlinski KK, Lew J (2012) p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity. Proc Natl Acad Sci U S A 109:20041–20046. https://doi.org/10.1073/pnas.1212914109 Zhang Y, Wang J, Huang W et al (2018) Nuclear nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun 9:3613. https://doi.org/10.1038/s41467-018-05808-y Ayyalasomayajula N, Ajumeera R, Chellu CS, Challa S (2019) Mitigative effects of epigallocatechin gallate in terms of diminishing apoptosis and oxidative stress generated by the combination of lead and amyloid peptides in human neuronal cells. J Biochem Mol Toxicol 33:1–9. https://doi.org/10.1002/jbt.22393 Shin BN, Kim DW, Kim IH et al (2019) Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 9:13032. https://doi.org/10.1038/s41598-019-49623-x Tian B, Yang Q, Mao Z (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 11:211–218. https://doi.org/10.1038/ncb1829 Nie J, Zhang Y, Ning L et al (2022) Phosphorylation of p53 by Cdk5 contributes to benzo[a]pyrene-induced neuronal apoptosis. Environ Toxicol 37:17–27. https://doi.org/10.1002/tox.23374 She H, Mao Z (2017) Study of ATM phosphorylation by Cdk5 in neuronal cells. Methods Mol Biol 1599:363–374. https://doi.org/10.1007/978-1-4939-6955-5_26 Lapresa R, Agulla J, Sánchez-Morán I et al (2019) Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology 146:19–27. https://doi.org/10.1016/j.neuropharm.2018.11.019 Hirokawa T, Horie T, Fukiyama Y et al (2021) Roscovitine, a cyclin-dependent kinase-5 Inhibitor, decreases phosphorylated tau formation and death of retinal ganglion cells of rats after optic nerve crush. Int J Mol Sci 22. https://doi.org/10.3390/ijms22158096 Pao P-C, Seo J, Lee A et al (2023) A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc Natl Acad Sci U S A 120:e2217864120. https://doi.org/10.1073/pnas.2217864120 Reinhardt L, Kordes S, Reinhardt P et al (2019) Dual inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem cell reports 12:502–517. https://doi.org/10.1016/j.stemcr.2019.01.015 Xu M, Huang Y, Song P et al (2019) AAV9-mediated Cdk5 inhibitory peptide reduces hyperphosphorylated tau and inflammation and ameliorates behavioral changes caused by overexpression of p25 in the brain. J Alzheimers Dis 70:573–585. https://doi.org/10.3233/JAD-190099 Huang Y, Huang W, Huang Y et al (2020) Cdk5 inhibitory peptide prevents loss of neurons and alleviates behavioral changes in p25 transgenic mice. J Alzheimers Dis 74:1231–1242. https://doi.org/10.3233/JAD-191098