Unrestricted somatic stem cells from human umbilical cord blood grow in serum-free medium as spheres

Springer Science and Business Media LLC - Tập 9 - Trang 1-16 - 2009
Faten Zaibak1,2, Paul Bello3, Jennifer Kozlovski1, Duncan Crombie4, Haozhi Ang1, Mirella Dottori5, Robert Williamson1,2
1Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Victoria, Australia
2Murdoch Childrens Research Institute, Royal Children’s Hospital, Victoria, Australia
3Stem Cell Sciences Ltd, Babraham Research Campus, Cambridge, UK
4O'Brien Institute, Melbourne, Australia
5Centre for Neurosciences, Department of Pharmacology, The University of Melbourne, Parkville, Australia

Tóm tắt

Human umbilical cord blood-derived unrestricted somatic stem cells (USSCs), which are capable of multilineage differentiation, are currently under investigation for a number of therapeutic applications. A major obstacle to their clinical use is the fact that in vitro expansion is still dependent upon fetal calf serum, which could be a source of pathogens. In this study, we investigate the capacity of three different stem cell culture media to support USSCs in serum-free conditions; HEScGRO™, PSM and USSC growth mediumACF. Our findings demonstrate that USSCs do not grow in HEScGRO™ or PSM, but we were able to isolate, proliferate and maintain multipotency of three USSC lines in USSC growth mediumACF. For the first one to three passages, cells grown in USSC growth mediumACF proliferate and maintain their morphology, but with continued passaging the cells form spherical cell aggregates. Upon dissociation of spheres, cells continue to grow in suspension and form new spheres. Dissociated cells can also revert to monolayer growth when cultured on extracellular matrix support (fibronectin or gelatin), or in medium containing fetal calf serum. Analysis of markers associated with pluripotency (Oct4 and Sox2) and differentiation (FoxA2, Brachyury, Goosecoid, Nestin, Pax6, Gata6 and Cytokeratin 8) confirms that cells in the spheres maintain their gene expression profile. The cells in the spheres also retain the ability to differentiate in vitro to form cells representative of the three germline layers after five passages. These data suggest that USSC growth mediumACF maintains USSCs in an undifferentiated state and supports growth in suspension. This is the first demonstration that USSCs can grow in a serum- and animal component-free medium and that USSCs can form spheres.

Tài liệu tham khảo

Kögler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, et al: A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004, 200 (2): 123-135. 10.1084/jem.20040440. Fallahi-Sichani M, Soleimani M, Najafi SM, Kiani J, Arefian E, Atashi A: In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamine-associated genes into neuron-like cells. Cell Biol Int. 2007, 31 (3): 299-303. 10.1016/j.cellbi.2006.11.011. Jager M, Degistirici O, Knipper A, Fischer J, Sager M, Krauspe R: Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation. J Bone Miner Res. 2007, 22 (8): 1224-1233. 10.1359/jbmr.070414. Sensken S, Waclawczyk S, Knaupp AS, Trapp T, Enczmann J, Wernet P, Kogler G: In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy. 2007, 9 (4): 362-378. 10.1080/14653240701320254. Kim BO, Tian H, Prasongsukarn K, Wu J, Angoulvant D, Wnendt S, Muhs A, Spitkovsky D, Li RK: Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation. 2005, 112 (9 Suppl): I96-104. Chan SL, Choi M, Wnendt S, Kraus M, Teng E, Leong HF, Merchav S: Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34+ cells by cotransplantation with cord blood-derived unrestricted somatic stem cells. Stem Cells. 2007, 25 (2): 529-536. 10.1634/stemcells.2005-0639. Ghodsizad A, Niehaus M, Koegler G, Martin U, Wernet P, Bara C, Khaladj N, Loos A, Makoui M, Thiele J, et al: Transplanted human cord blood derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart. 2009, 95 (1): 27-35. 10.1136/hrt.2007.139329. Zaibak F, Kozlovski J, Vadolas J, Sarsero JP, Williamson R, Howden SE: Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Therapy. 2009, 16 (3): 404-414. 10.1038/gt.2008.187. Selvaggi TA, Walker RE, Fleisher TA: Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood. 1997, 89 (3): 776-779. Martin MJ, Muotri A, Gage F, Varki A: Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine. 2005, 11 (2): 228-232. 10.1038/nm1181. Chachques JC, Herreros J, Trainini J, Juffe A, Rendal E, Prosper F, Genovese J: Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol. 2004, 95 (Suppl 1): S29-33. 10.1016/S0167-5273(04)90009-5. Inniss K, Moore H: Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. Stem Cells and Development. 2006, 15 (6): 789-796. 10.1089/scd.2006.15.789. Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, Filipczyk A, Koh KL, Tellis I, Nguyen LT, Pera MF: Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells. 2005, 23 (10): 1541-1548. 10.1634/stemcells.2004-0338. Ikeda H, Satoh H, Yanase M, Inoue Y, Tomiya T, Arai M, Tejima K, Nagashima K, Maekawa H, Yahagi N, et al: Antiproliferative property of sphingosine 1-phosphate in rat hepatocytes involves activation of Rho via Edg-5. Gastroenterology. 2003, 124 (2): 459-469. 10.1053/gast.2003.50049. Payne SG, Milstien S, Spiegel S: Sphingosine-1-phosphate: dual messenger functions. FEBS letters. 2002, 531 (1): 54-57. 10.1016/S0014-5793(02)03480-4. Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, Thomas DM, Coopman PJ, Thangada S, Liu CH, et al: Dual actions of sphingosine-1-phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 1998, 142 (1): 229-240. 10.1083/jcb.142.1.229. Ishii I, Fukushima N, Ye X, Chun J: Lysophospholipid receptors: signaling and biology. Annu Rev Biochem. 2004, 73: 321-354. 10.1146/annurev.biochem.73.011303.073731. Donati C, Cencetti F, Nincheri P, Bernacchioni C, Brunelli S, Clementi E, Cossu G, Bruni P: Sphingosine 1-phosphate mediates proliferation and survival of mesoangioblasts. Stem Cells. 2007, 25 (7): 1713-1719. 10.1634/stemcells.2006-0725. Kimura T, Boehmler AM, Seitz G, Kuci S, Wiesner T, Brinkmann V, Kanz L, Mohle R: The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood. 2004, 103 (12): 4478-4486. 10.1182/blood-2003-03-0875. Xue X, Cai Z, Seitz G, Kanz L, Weisel KC, Mohle R: Differential effects of G protein coupled receptors on hematopoietic progenitor cell growth depend on their signaling capacities. Annals of the New York Academy of Sciences. 2007, 1106: 180-189. 10.1196/annals.1392.014. Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, Urbich C, Spyridopoulos I, Chun J, Brinkmann V, Keul P, et al: Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arteriosclerosis, thrombosis, and vascular biology. 2007, 27 (2): 275-282. 10.1161/01.ATV.0000254669.12675.70. Wong RC, Tellis I, Jamshidi P, Pera M, Pebay A: Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells and Development. 2007, 16 (6): 989-1002. 10.1089/scd.2007.0057. Claesson-Welsh L, Heldin CH: Platelet-derived growth factor. Three isoforms that bind to two distinct cell surface receptors. Acta Oncol. 1989, 28 (3): 331-334. 10.3109/02841868909111202. Uutela M, Lauren J, Bergsten E, Li X, Horelli-Kuitunen N, Eriksson U, Alitalo K: Chromosomal location, exon structure, and vascular expression patterns of the human PDGFC and PDGFC genes. Circulation. 2001, 103 (18): 2242-2247. Escobedo JA, Barr PJ, Williams LT: Role of tyrosine kinase and membrane-spanning domains in signal transduction by the platelet-derived growth factor receptor. Mol Cell Biol. 1988, 8 (12): 5126-5131. Eriksson A, Siegbahn A, Westermark B, Heldin CH, Claesson-Welsh L: PDGF alpha- and beta-receptors activate unique and common signal transduction pathways. The EMBO journal. 1992, 11 (2): 543-550. Satoh T, Fantl WJ, Escobedo JA, Williams LT, Kaziro Y: Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types. Mol Cell Biol. 1993, 13 (6): 3706-3713. Bottcher RT, Niehrs C: Fibroblast growth factor signaling during early vertebrate development. Endocrine reviews. 2005, 26 (1): 63-77. 10.1210/er.2003-0040. Ahn HJ, Lee WJ, Kwack K, Kwon YD: FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS letters. 2009, 583 (17): 2922-2926. 10.1016/j.febslet.2009.07.056. Stewart MH, Bendall SC, Bhatia M: Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. Journal of Molecular Medicine. 2008, 86 (8): 875-886. Kurosawa H: Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007, 103 (5): 389-398. 10.1263/jbb.103.389. Conley BJ, Young JC, Trounson AO, Mollard R: Derivation, propagation and differentiation of human embryonic stem cells. Int J Biochem Cell Biol. 2004, 36 (4): 555-567. 10.1016/j.biocel.2003.07.003. Liedtke S, Enczmann J, Waclawczyk S, Wernet P, Kögler G: Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell. 2007, 1: 364-366. 10.1016/j.stem.2007.09.003. Wartenberg M, Gunther J, Hescheler J, Sauer H: The embryoid body as a novel in vitro assay system for antiangiogenic agents. Lab Invest. 1998, 78 (10): 1301-1314. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N: Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000, 6 (2): 88-95. Layer PG, Robitzki A, Rothermel A, Willbold E: Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci. 2002, 25 (3): 131-134. 10.1016/S0166-2236(00)02036-1. Lu D, Li Y, Mahmood A, Wang L, Rafiq T, Chopp M: Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury. J Neurosurg. 2002, 97 (4): 935-940. 10.3171/jns.2002.97.4.0935. Seiler A, Visan A, Buesen R, Genschow E, Spielmann H: Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod Toxicol. 2004, 18 (2): 231-240. 10.1016/j.reprotox.2003.10.015. Aleksandrova MA, Podgornyi OV, Poltavtseva RA, Panova IG, Sukhikh GT: Structure and cell composition of spheres cultured from human fetal retina. Bull Exp Biol Med. 2006, 142 (1): 152-159. 10.1007/s10517-006-0315-9. Suon S, Yang M, Iacovitti L: Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson's disease. Brain Res. 2006, 1106 (1): 46-51. 10.1016/j.brainres.2006.05.109. Weitzer G: Embryonic stem cell-derived embryoid bodies: an in vitro model of eutherian pregastrulation development and early gastrulation. Handb Exp Pharmacol. 2006, 21-51. full_text. 174 Lan L, Cui D, Nowka K, Derwahl M: Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J Clin Endocrinol Metab. 2007, 92 (9): 3681-3688. 10.1210/jc.2007-0281. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG: Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005, 106 (5): 1601-1603. 10.1182/blood-2005-03-0987. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R: The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985, 87: 27-45. Abuljadayel IS: Induction of stem cell-like plasticity in mononuclear cells derived from unmobilised adult human peripheral blood. Curr Med Res Opin. 2003, 19 (5): 355-375. 10.1185/030079903125001901. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, et al: Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006, 440 (7088): 1199-1203. 10.1038/nature04697. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X: Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol. 2006, 168 (6): 1879-1888. 10.2353/ajpath.2006.051170. Yang X, Qu L, Wang X, Zhao M, Li W, Hua J, Shi M, Moldovan N, Wang H, Dou Z: Plasticity of epidermal adult stem cells derived from adult goat ear skin. Mol Reprod Dev. 2007, 74 (3): 386-396. 10.1002/mrd.20598. Maye P, Becker S, Kasameyer E, Byrd N, Grabel L: Indian hedgehog signaling in extraembryonic endoderm and ectoderm differentiation in ES embryoid bodies. Mech Dev. 2000, 94 (1-2): 117-132. 10.1016/S0925-4773(00)00304-X. Conley BJ, Ellis S, Gulluyan L, Mollard R: BMPs regulate differentiation of a putative visceral endoderm layer within human embryonic stem-cell-derived embryoid bodies. Biochem Cell Biol. 2007, 85 (1): 121-132. 10.1139/O06-145. Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, et al: Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell. 2009, 5 (4): 434-441. 10.1016/j.stem.2009.08.021. Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodriguez-Piza I, Vassena R, Raya A, Boue S, Barrero MJ, Corbella BA, et al: Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell. 2009, 5 (4): 353-357. 10.1016/j.stem.2009.09.008. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry. 1997, 64 (2): 295-312. 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I. Dottori M, Pera MF: Neural differentiation of human embryonic stem cells. Methods Mol Biol. 2008, 438: 19-30. Berger M, Adams S, Tigges B, Sprague S, Wang XJ, Collins D, McKenna D: Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells. Cytotherapy. 2006, 8 (5): 480-487. 10.1080/14653240600941549. Cozens AL, Yezzi MJ, Chin L, Simon EM, Finkbeiner WE, Wagner JA, Gruenert DC: Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. 1992, 89 (11): 5171-5175. 10.1073/pnas.89.11.5171.