Unravelling the water-energy-economics-continuum of hydroelectricity in the face of climate change

Suresh Marahatta1, Utsav Bhattarai2, Laxmi Prasad Devkota3, Deepak Aryal1
1Central Department of Hydrology and Meteorology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Bagmati, Nepal
2Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
3Water Modeling Solution Pvt. Ltd., Lalitpur, Bagmati, Nepal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ali, S. A., Aadhar, S., Shah, H. L., & Mishra, V. (2018). Projected increase in hydropower production in India under climate change. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-30489-4.

Amir Jabbari, A., & Nazemi, A. (2019). Alterations in Canadian hydropower production potential due to continuation of historical trends in climate variables. Resources, 8, 163. https://doi.org/10.3390/resources8040163.

Barreto, R. A. (2018). Fossil fuels, alternative energy and economic growth. Economic Modelling, 75, 196–220. https://doi.org/10.1016/j.econmod.2018.06.019.

Belfiori, M. E. (2020). Fossil fuel subsidies, the green paradox and the Fiscal paradox. Economics of Energy and Environmental Policy, 10(1), 183–193. https://doi.org/10.5547/2160-5890.10.1.MBEL.

Best, R. (2017). Switching towards coal or renewable energy? The effects of financial capital on energy transitions. Energy Economics, 63, 75–83. https://doi.org/10.1016/j.eneco.2017.01.019.

BGHP. (2015). Feasibility study and detailed design of Budhigandaki hydropower project part 1. Budhigandaki: Vol. Main (Issue December).

Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., De Souza Noel Simas Barbosa, L., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. https://doi.org/10.1016/j.energy.2021.120467.

Casale, F., Bombelli, G.M., Monti, R., & Bocchiola, D. (2020). Hydropower potential in the Kabul River under climate change scenarios in the XXI century. Theoretical and Applied Climatology, 139, 1415–1434. https://doi.org/10.1007/s00704-019-03052-y.

Caceres, A. L., Jaramillo, P., Matthews, H. S., Samaras, C., & Nijssen, B. (2021). Hydropower under climate uncertainty: Characterizing the usable capacity of Brazilian, Colombian and Peruvian power plants under climate scenarios. Energy for Sustainable Development, 61, 217–229. https://doi.org/10.1016/j.esd.2021.02.006.

Chang, J., Wang, X., Li, Y., Wang, Y., & Zhang, H. (2018). Hydropower plant operation rules optimization response to climate change. Energy, 160, 886–897. https://doi.org/10.1016/j.energy.2018.07.066.

Davis, M., Moronkeji, A., Ahiduzzaman, M., & Kumar, A. (2020). Assessment of renewable energy transition pathways for a fossil fuel-dependent electricity-producing jurisdiction. Energy for Sustainable Development, 59, 243–261. https://doi.org/10.1016/j.esd.2020.10.011

de Faria, F. A. M., & Jaramillo, P. (2017). The future of power generation in Brazil: an analysis of alternatives to Amazonian hydropower development. Energy for Sustainable Development, 41, 24–35. https://doi.org/10.1016/j.esd.2017.08.001.

de Jong, P., Barreto, T. B., Tanajura, C. A. S., Oliveira-Esquerre, K. P., Kiperstok, A., & Andrade Torres, E. (2021). The impact of regional climate change on hydroelectric resources in South America. Renewable Energy, 173, 76–91. https://doi.org/10.1016/j.renene.2021.03.077.

de Jong, P., Tanajura, C. A. S., Sánchez, A. S., Dargaville, R., Kiperstok, A., & Torres, E. A. (2018). Hydroelectric production from Brazil’s São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, 634, 1540–1553. https://doi.org/10.1016/j.scitotenv.2018.03.256.

de Oliveira, V. A., de Mello, C. R., Viola, M. R., & Srinivasan, R. (2017). Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande river basin, Southeastern Brazil. International Journal of Climatology, 37(15), 5005–5023. https://doi.org/10.1002/joc.5138.

de Queiroz, A. R., Faria, V. A. D., Lima, L. M. M., & Lima, J. W. M. (2019). Hydropower revenues under the threat of climate change in Brazil. Renewable Energy, 133, 873–882. https://doi.org/10.1016/j.renene.2018.10.050.

Devkota, L.P., & Gyawali, D.R. (2015). Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal. Journal of Hydrology: Regional Studies, 4, 502–515. https://doi.org/10.1016/j.ejrh.2015.06.023.

Devkota, R.P., Pandey, V.P., Bhattarai, U., Shrestha, H., Adhikari, S., & Dulal, K.N. (2016). Climate change and adaptation strategies in Budhi Gandaki River Basin, Nepal: a perception-based analysis. Climatic Change. https://doi.org/10.1007/s10584-016-1836-5.

Devkota, L. P., Bhattarai, U., Khatri, P., Marahatta, S., & Shrestha, D. (2021). Resilience of hydropower plants to flow variation through the concept of flow elasticity of power: theoretical development renewable energy. Renewable Energy. https://doi.org/10.1016/j.renene.2021.11.051 in press.

Devkota, L.P., Bhattarai, U., Khatri, P., Marahatta, S., & Shrestha, D. (2022). Resilience of hydropower plants to flow variation through the concept of flow elasticity of power: Theoretical development. Renewable Energy, 184, 920–932. https://doi.org/10.1016/j.renene.2021.11.051.

Dietzenbacher, E., Kulionis, V., & Capurro, F. (2020). Measuring the effects of energy transition: a structural decomposition analysis of the change in renewable energy use between 2000 and 2014. Applied Energy, 258, 114040. https://doi.org/10.1016/j.apenergy.2019.114040.

Donk, P., Van Uytven, E., Willems, P., & Taylor, M. A. (2018). Assessment of the potential implications of a 1.5 °C versus higher global temperature rise for the Afobaka hydropower scheme in Suriname. Regional Environmental Change, 18(8), 2283–2295. https://doi.org/10.1007/s10113-018-1339-1.

Gunturu, U.B., & Hallgren, W. (2017). Asynchrony of wind and hydropower resources in Australia. Scientific Reports, 7, 1–9. https://doi.org/10.1038/s41598-017-08981-0.

Hanif, I., Muhammad, S., Raza, F., Gago-de-santos, P., & Abbas, Q. (2019). Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: some empirical evidence. Energy, 171, 493–501. https://doi.org/10.1016/j.energy.2019.01.011.

Hamududu, B.H., & Killingtveit, Å. (2016). Hydropower production in future climate scenarios; the case for the Zambezi River. Energies, 9, 1–18. https://doi.org/10.3390/en9070502.

IEA. (2020). Key world energy statistics 2020. In Key World Energy Statistics (Issue August).

Janssen, A. B. G., Droppers, B., Kong, X., Teurlincx, S., Tong, Y., & Kroeze, C. (2021). Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics. Water Research, 202, 117427. https://doi.org/10.1016/j.watres.2021.117427.

Jha, R. (2011). Total Run-of-River type Hydropower Potential of Nepal. Hydro Nepal: Journal of Water, Energy and Environment, 7, 8–13. https://doi.org/10.3126/hn.v7i0.4226

Kaini, S., Nepal, S., Pradhananga, S., Gardner, T., & Sharma, A.K. (2020). Impacts of climate change on the flow of the transboundary Koshi River, with implications for local irrigation. International Journal of Water Resources Development, 00, 1–26. https://doi.org/10.1080/07900627.2020.1826292.

Li, S., Bush, R. T., Santos, I. R., Zhang, Q., Song, K., Mao, R., Wen, Z., & Lu, X. X. (2018). Large greenhouse gases emissions from China’s lakes and reservoirs. Water Research, 147, 13–24. https://doi.org/10.1016/j.watres.2018.09.053.

Liao, C., Erbaugh, J. T., Kelly, A. C., & Agrawal, A. (2021). Clean energy transitions and human well-being outcomes in Lower and Middle Income Countries: a systematic review. Renewable and Sustainable Energy Reviews, 145, 111063. https://doi.org/10.1016/j.rser.2021.111063.

Liu, X., Tang, Q., Voisin, N., & Cui, H. (2016). Projected impacts of climate change on hydropower potential in China. Hydrology and Earth System Sciences, 20(8), 3343–3359. https://doi.org/10.5194/hess-20-3343-2016.

Liu, M., Xie, H., He, Y., Zhang, Q., Sun, X., Yu, C., Chen, L., Zhang, W., Zhang, Q., & Wang, X. (2019). Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam. Water Research, 166, 115042. https://doi.org/10.1016/j.watres.2019.115042.

Liu, L., Yang, Z. J., Delwiche, K., Long, L. H., Liu, J., Liu, D. F., Wang, C. F., Bodmer, P., & Lorke, A. (2020). Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Water Research, 186, 116319. https://doi.org/10.1016/j.watres.2020.116319.

Liu, X., Zhao, T., Chang, C., & James, C. (2021). China’s renewable energy strategy and industrial adjustment policy. Renewable Energy, 170, 1382–1395. https://doi.org/10.1016/j.renene.2021.02.045.

Martins, F., Felgueiras, C., & Smitková, M. (2018). Fossil fuel energy consumption in European countries. Energy Procedia, 153, 107–111. https://doi.org/10.1016/j.egypro.2018.10.050.

Mattmann, M., Logar, I., & Brouwer, R. (2016). Hydropower externalities: a meta-analysis. Energy Economics, 57, 66–77. https://doi.org/10.1016/j.eneco.2016.04.016.

Marahatta, S., Aryal, D., Devkota, L.P., Bhattarai, U., & Shrestha, D. (2021a). Application of swat in hydrological simulation of complex mountainous river basin (Part II: Climate Change Impact Assessment). Water (Switzerland) 13. https://doi.org/10.3390/w13111548.

Marahatta, S., Devkota, L.P., & Aryal, D. (2021b). Impact of flow variation on hydropower projects in Budhigandaki River Basin of Nepal. Journal of Institute of Science and Technology, 26, 89–98. https://doi.org/10.3126/jist.v26i1.37831.

Marahatta, S., Devkota, L.P., & Aryal, D. (2021c). Application of swat in hydrological simulation of complex mountainous river basin (Part I: Model Development). Water (Switzerland) 13. https://doi.org/10.3390/w13111546.

Mutezo, G., & Mulopo, J. (2021). A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renewable and Sustainable Energy Reviews, 137, 110609. https://doi.org/10.1016/j.rser.2020.110609.

MoF. (2021). Economic Survey 2077/78.

Mtilatila, L., Bronstert, A., Shrestha, P., Kadewere, P., & Vormoor, K. (2020). Susceptibility of water resources and hydropower production to climate change in the tropics: The case of Lake Malawi and Shire River Basins, SE Africa. Hydrology, 7. https://doi.org/10.3390/HYDROLOGY7030054

NEA. (2017). NEA board decisions on the power purchase rates and associated rules for PPA of RoR / PRoR / Storage.

Nepal Rastra Bank, n.d. NRB Forex [https://www.nrb.org.np].

Pakhtigian, E. L., Jeuland, M., Dhaubanjar, S., & Pandey, V. P. (2020). Balancing intersectoral demands in basin-scale planning: the case of Nepal’s western river basins. Water Resources and Economics, 30, 100152. https://doi.org/10.1016/j.wre.2019.100152.

Paltsev, S. (2020). Projecting energy and climate for the 21st Century. Economics of Energy & Environmental Policy, 9, 43–62. https://doi.org/10.5547/2160-5890.9.1.SPAL.

Pandey, V.P., Dhaubanjar, S., Bharati, L., & Thapa, B.R. (2019). Hydrological response of Chamelia watershed in Mahakali Basin to climate change. Science of The Total Environment, 650, 365–383. https://doi.org/10.1016/j.scitotenv.2018.09.053.

Poletti, S., & Staffell, I. (2021). Understanding New Zealand’s wind resources as a route to 100 % renewable electricity. Renewable Energy, 170, 449–461. https://doi.org/10.1016/j.renene.2021.01.053.

Poudineh, R., Sen, A., & Fattouh, B. (2020). Electricity markets in the resource-rich countries of the MENA: adapting for the transition era. Economics of Energy and Environmental Policy, 10(1), 1–25. https://doi.org/10.5547/2160-5890.10.1.RPOU.

Qin, P., Xu, H., Liu, M., Du, L., Xiao, C., Liu, L., & Tarroja, B. (2020). Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation. Journal of Hydrology, 580, 123922. https://doi.org/10.1016/j.jhydrol.2019.123922.

Ranzani, A., Bonato, M., Patro, E. R., Gaudard, L., & Michele, C. D. (2018). Hydropower future: between climate change, renewable deployment, carbon and fuel prices. Water. https://doi.org/10.3390/w10091197.

Rehman, A., Ma, H., Chishti, M. Z., Ozturk, I., Irfan, M., & Ahmad, M. (2021). Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China : another outlook. Environmental Science and Pollution Research, 28, 17319–17330.

Shirsat, T.S., Kulkarni, A. V., Momblanch, A., Randhawa, S.S., & Holman, I.P. (2021). Towards climate-adaptive development of small hydropower projects in Himalaya: A multi-model assessment in upper Beas basin. Journal of Hydrology: Regional Studies, 34, 100797. https://doi.org/10.1016/j.ejrh.2021.100797.

Shrestha, A., Shrestha, S., Tingsanchali, T., Budhathoki, A., & Ninsawat, S. (2021). Adapting hydropower production to climate change: a case study of Kulekhani Hydropower Project in Nepal. Journal of Cleaner Production, 279, 123483. https://doi.org/10.1016/j.jclepro.2020.123483

Tomczyk, P., & Wiatkowski, M. (2020). Challenges in the development of hydropower in selected european countries. Water. https://doi.org/10.3390/w12123542

Turner, S.W.D., Hejazi, M., Kim, S.H., Clarke, L., & Edmonds, J. (2017a). Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy, 141, 2081–2090. https://doi.org/10.1016/j.energy.2017.11.089.

Turner, S.W.D., Ng, J.Y., & Galelli, S. (2017b). Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Science of the Total Environment, 590–591, 663–675. https://doi.org/10.1016/j.scitotenv.2017.03.022.

Uamusse, M.M., Tussupova, K., & Persson, K.M. (2020). Climate change effects on hydropower in Mozambique. Applied Science, 10. https://doi.org/10.3390/app10144842.

Wagner, B., Hauer, C., Habersack, H., 2019. Current hydropower developments in Europe. Current Opinion in Environmental Sustainability, 37, 41–49. https://doi.org/10.1016/j.cosust.2019.06.002.

Zhou, Q., Hanasaki, N. (2018). Economic consequences of global climate change and mitigation on future hydropower generation, 77–90.

Zhong, R., Zhao, T., He, Y., & Chen, X. (2019). Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong. Energy, 179, 685–696. https://doi.org/10.1016/j.energy.2019.05.059.