Unraveling historical introgression and resolving phylogenetic discord within Catostomus (Osteichthys: Catostomidae)
Tóm tắt
Porous species boundaries can be a source of conflicting hypotheses, particularly when coupled with variable data and/or methodological approaches. Their impacts can often be magnified when non-model organisms with complex histories of reticulation are investigated. One such example is the genus Catostomus (Osteichthys, Catostomidae), a freshwater fish clade with conflicting morphological and mitochondrial phylogenies. The former is hypothesized as reflecting the presence of admixed genotypes within morphologically distinct lineages, whereas the latter is interpreted as the presence of distinct morphologies that emerged multiple times through convergent evolution. We tested these hypotheses using multiple methods, to including multispecies coalescent and concatenated approaches. Patterson’s D-statistic was applied to resolve potential discord, examine introgression, and test the putative hybrid origin of two species. We also applied naïve binning to explore potential effects of concatenation. We employed 14,007 loci generated from ddRAD sequencing of 184 individuals to derive the first highly supported nuclear phylogeny for Catostomus. Our phylogenomic analyses largely agreed with a morphological interpretation,with the exception of the placement of Xyrauchen texanus, which differs from both morphological and mitochondrial phylogenies. Additionally, our evaluation of the putative hybrid species C. columbianus revealed a lack introgression and instead matched the mitochondrial phylogeny. Furthermore, D-statistic tests clarified all discrepancies based solely on mitochondrial data, with agreement among topologies derived from concatenation and multispecies coalescent approaches. Extensive historic introgression was detected across six species-pairs. Potential endemism in the Virgin and Little Colorado Rivers was also apparent, and the former genus Pantosteus was derived as monophyletic, save for C. columbianus. Complex reticulated histories detected herein support the hypothesis that introgression was responsible for conflicts that occurred within the mitochondrial phylogeny, and explains discrepancies found between it and previous morphological phylogenies. Additionally, the hybrid origin of C. columbianus was refuted, but with the caveat that more fine-grain sampling is still needed. Our diverse phylogenomic approaches provided largely concordant results, with naïve binning useful in exploring the single conflict. Considerable diversity was found within Catostomus across southwestern North America, with two drainages [Virgin River (UT) and Little Colorado River (AZ)] reflecting unique composition.
Tài liệu tham khảo
Rokas A, Williams BL, King N, Carroll SB. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature. 2003;425:798–804. https://doi.org/10.1038/nature02053.
Folk RA, Mandel JR, Freudenstein JV. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenetic discord in a lineage of angiosperms. Syst Biol. 2017;66:320–37. https://doi.org/10.1093/sysbio/syw083.
Posada D. Phylogenomics for systematic biology. Syst Biol. 2016;65:353–6. https://doi.org/10.1093/sysbio/syw027.
Lemmon EM, Lemmon AR. High-throughput genomic data in systematics and phylogenetics. Annu Rev Ecol Evol Syst. 2013;44:99–121. https://doi.org/10.1146/annurev-ecolsys-110512-135822.
Nater A, Burri R, Kawakami T, Smeds L, Ellegdren H. Resolving evolutionary relationships in closely related species with whole-genome sequencing data. Syst Biol. 2015;64:1000–17. https://doi.org/10.1093/sysbio/syv045.
Eaton DA, Ree RH. Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst Biol. 2013;62:689–706. https://doi.org/10.1093/sysbio/syt032.
Som A. Causes, consequences and solutions of phylogenetic incongruence. Brief Bioinform. 2015;16:536–48. https://doi.org/10.1093/bib/bbu015.
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neanderthal genome. Science. 2010;328:710–22. https://doi.org/10.1126/science.1188021.
Arnold ML. Natural hybridization as an evolutionary process. Annu Rev Ecol Syst. 1992;23:237–61. https://doi.org/10.1146/annurev.es.23.110192.001321.
Dowling TE, Secor CL. The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst. 1997;28:593–619. https://doi.org/10.1146/annurev.ecolsys.28.1.593.
Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov IV, et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 2015;347:1–6. doi:https://doi.org/10.1126/science.1258524.
Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 2012;11041:1–5. doi:https://doi.org/10.1038/nature11041.
Nadeau NJ, Whibley A, Jones RT, Davey JW, Dasmahapatra KK, Baxter SW, et al. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Philos Trans R Soc Biol. 2012;367:343–53. https://doi.org/10.1098/rstb.2011.0198.
Nosil P, Funk DJ, Ortiz-Barrientos D. Divergent selection and heterogeneous genomic divergence. Mol Ecol. 2009;18:375–402. https://doi.org/10.1111/j.1365-294X.2008.03946.x.
Michel AP, Sim S, Powell THQ, Taylor MS, Nosil P, Feder JL. Widespread genomic divergence during sympatric speciation. Proc Nat Acad Sci USA. 2010;107:9724–9. https://doi.org/10.1073/pnas.1000939107.
Harrison RG. The language of speciation. Evolution. 2012;66:3643–57. https://doi.org/10.1111/j.1558-5646.2012.01785.x.
Avise JC. Phylogeography: retrospect and prospect. J Biogeogr. 2009;36:3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x.
Bermingham E, Moritz C. Comparative phylogeography: concepts and applications. Mol Ecol. 1998;7:367–9. https://doi.org/10.1046/j.1365-294x.1998.00424.x.
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol Ecol. 2012;21:4942–57. https://doi.org/10.1111/mec.12006.
Bachtrog D, Thornton K, Clark A, Andolfatto P. Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution. 2006;60:292–302. https://doi.org/10.1554/05-337.1.
Renoult JP, Geniez P, Bacquet P, Benoit L, Crochet PA. Morphology and nuclear markers reveal extensive mitochondrial introgressions in the Iberian Wall lizard species complex. Mol Ecol. 2009;18:4298–315. https://doi.org/10.1111/j.1365-294X.2009.04351.x.
Humphries EM, Winker K. Discord reigns among nuclear, mitochondrial and phenotypic estimates of divergence in nine lineages of trans-Beringian birds. Mol Ecol. 2011;20:573–83. https://doi.org/10.1111/j.1365-294X.2010.04965.x.
Peters JL, Winker K, Millam KC, Lavretsky P, Kulikova I, Wilson RE, Zhuravlev YN, et al. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas). Mol Ecol. 2014;23:2961–74. https://doi.org/10.1111/mec.12799.
Chen W, Bi K, Fu J. Frequent mitochondrial gene introgression among high elevation Tibetan megophryid frogs revealed by conflicting gene genealogies. Mol Ecol. 2009;18:2856–76. https://doi.org/10.1111/j.1365-294X.2009.04258.x.
Bryson RW, Smith BT. Nieto-Montes de Oca a, García-Vázquez UO, riddle BR. The role of mitochondrial introgression in illuminating the evolutionary history of Nearctic treefrogs. Zool J Linnean Soc. 2014;172:103–16. https://doi.org/10.1111/zoj.12169.
Galbreath KE, Hafner DJ, Zamudio KR, Agnew K. Isolation and introgression in the intermountain west: contrasting gene genealogies reveal the complex biogeographic history of the American pika (Ochotona princeps). J Biogeogr. 2010;37:344–62. https://doi.org/10.1111/j.1365-2699.2009.02201.x.
Phillips MJ, Haouchar D, Pratt RC, Gibb GC, Bunce M. Inferring kangaroo phylogeny from incongruent nuclear and mitochondrial genes. PLoS One. 2013;8:e57745. https://doi.org/10.1371/journal.pone.0057745.
Bossu CM, Near TJ. Gene trees reveal repeated instances of mitochondrial DNA introgression in orangethroat darters (Percidae: Etheostoma). Syst Biol. 2009;58:114–29. https://doi.org/10.1093/sysbio/syp014.
Willis SC, Farias IP, Ortí G. Testing mitochondrial capture and deep coalescence in Amazonian cichlid fishes (Cichlidae: Cichla). Evolution. 2014;68:256–68. https://doi.org/10.1111/evo.12230.
Akishinonomiya F, Ikeda Y, Aizawa M, Nakagawa S, Umehara Y, Yonezawa T, et al. Speciation of two gobioid species, Pterogobius elapoides and Pterogobius zonoleucus revealed by multi-locus nuclear and mitochondrial DNA analyses. Gene. 2016;576:593–602. https://doi.org/10.1016/j.gene.2015.10.014.
Hubbs CL. Hybridization between fish species in nature. Syst Zool. 1955;4:1–20. https://doi.org/10.2307/2411933. http://www.jstor.org/stable/2411933
Campton DE. Natural hybridization and introgression in fishes: methods of detection and genetic interpretations. In: Ryman N, Utter FM, editors. Population genetics and fishery management. Seattle: University of Washington Press; 1987. p. 161–93.
Holden PB, Stalnaker CB. Distribution and abundance of mainstream fishes of the middle and upper Colorado River basins, 1967-1973. Trans Am Fisheries Soc. 1975;104:217–31. https://doi.org/10.1577/1548-8659(1975)104<217:DAAOMF>2.0.CO;2.
Douglas MR, Douglas ME. Molecular approaches to stream fish ecology. Am Fisheries Soc Symp. 2010;73:157–95. https://www.researchgate.net/publication/319088105_Molecular_Approaches_to_Stream_Fish_Ecology
Smith GR, Stewart JD, Carpenter NE. Fossil and recent mountain suckers Pantosteus, and significance of introgression in catostomid fishes of western United States. Occas Pap Mus Zool Univ Mich. 2013;724:1–59. https://deepblue.lib.umich.edu/handle/2027.42/122717
Douglas ME, Minckley WL, DeMarais BD. Did vicariance mold phenotypes of western north American fishes? Evidence from Gila River cyprinids. Evolution. 1999;53:238–46. https://doi.org/10.1111/j.1558-5646.1999.tb05349.x.
Smith GR, Badgley C, Eiting TP, Larson PS. Species diversity gradients in relation to geological history in north American freshwater fishes. Evol Ecol Res. 2010;12:693–726. https://www.researchgate.net/publication/266459830_Species_diversity_gradients_in_relation_to_geological_history_in_North_American_freshwater_fishes
Chen WJ, Mayden RL. Phylogeny of suckers (Teleostei: Cypriniformes: Catostomidae): further evidence of relationships provided by the single-copy nuclear gene IRBP2. Zootaxa. 2012;3586:195–210. https://www.researchgate.net/publication/281412573
Castillo-Ramírez S, González V. Factors affecting the concordance between orthologous gene trees and species tree in bacteria. BMC Evol Biol. 2008;8:300. https://doi.org/10.1186/1471-2148-8-300.
Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28:2239–52. https://doi.org/10.1093/molbev/msr048.
Leaché AD, Harris RB, Maliska ME, Linkem CW. Comparative species divergence across eight triplets of spiny lizards (Sceloporus) using genomic sequence data. 2013;Genome Biol Evol, 5:2410–9. https://doi.org/10.1093/gbe/evt186.
Cui R, Schumer M, Kruesi K, Walter R, Andolfatto P, Rosenthal GG. Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes. Evolution. 2013;67:2166–79. https://doi.org/10.1111/evo.12099.
Baird N, Etter P, Atwood T, Currey M, Shiver A, Lewis Z, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:e3376. https://doi.org/10.1371/journal.pone.0003376.
Kane NC, King MG, Baker MS, Raduski A, Karrenberg S, Yatabe Y, et al. Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent Helianthus species. Evolution. 2009;63:2061–75. https://doi.org/10.1111/j.1558-5646.2009.00703.x.
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7:e37135. https://doi.org/10.1371/journal.pone.0037135.
Ferris SD. Tetraploidy and The evolution of the catostomid fishes. In: turner BJ, editor. Evolutionary genetics of fishes. New York: springer. Science. 1984:55–93. https://doi.org/10.1007/978-1-4684-4652-4_2.
Rubin BE, Ree RH, Moreau CS. Inferring phylogenies from RAD sequence data. PLoS One. 2012;7:e33394. https://doi.org/10.1371/journal.pone.0033394.
DaCosta JM, Sorenson MD. Amplification biases and consistent recovery of loci in a double-digest RAD-seq protocol. PLoS One. 2014;9:e106713. https://doi.org/10.1371/journal.pone.0106713.
Leaché AD, Banbury BL, Felsenstein J, Nieto-Montes de Oca A, Stamatakis A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst Biol. 2015;64:1032–47. https://doi.org/10.1093/sysbio/syv053.
Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314. https://doi.org/10.1371/journal.pbio.0030314.st001.
Christoffels A. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol. 2004;21:1146–51. https://doi.org/10.1093/molbev/msh114.
Vandepoele K, de Vos W, Taylor JS, Meyer A, Van de Peer Y. Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Nat Acad Sci USA. 2004;101:1638–43. https://doi.org/10.1073/pnas.0307968100.
Uyeno T, Smith GR. Tetraploid origin of the karyotype of catostomid fishes. Science. 1972;175:644–6. https://doi.org/10.1126/science.175.4022.644.
Unmack PJ, Dowling TE, Laitinen NJ, Secor CL, Mayden RL, Shiozawa DK, et al. Influence of introgression and geological processes on phylogenetic relationships of western north American mountain suckers (Pantosteus, Catostomidae). PLoS One. 2014;9:e90061. https://doi.org/10.1371/journal.pone.0090061.
Bangs MR, Douglas MR, Thompson P, Douglas ME. Anthropogenic impacts facilitate native fish hybridization in the Bonneville Basin of western North America. Trans Am Fisheries Soc. 2017;146:16–21. https://doi.org/10.1080/00028487.2016.1235611.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90. https://doi.org/10.1093/bioinformatics/btl446.
Ronquist F, Teslenko M, Van der Mark P, Ayres D, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. https://doi.org/10.1093/sysbio/sys029.
Kozlov AM, Aberer AJ, Stamatakis A. ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics. 2015;31:2577–9. https://doi.org/10.1093/bioinformatics/btv184.
Liu L, Xi Z, Wu S, Davis CC, Edwards SV. Estimating phylogenetic trees from genome-scale data. Ann N Y Acad Sci. 2015;1360:36–53. https://doi.org/10.1111/nyas.12747.
Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE, Glenn TC, et al. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol Phylogenet Evol. 2016;94:447–62. https://doi.org/10.1016/j.ympev.2015.10.027.
Twyford AD, Ennos RA. Next-generation hybridization and introgression. Heredity. 2012;108:179–89. https://doi.org/10.1038/hdy.2011.68.
Leaché AD, Harris RB, Rannala B, Yang Z. The influence of gene flow on species tree estimation: a simulation study. Syst Biol. 2014;63:17–30. https://doi.org/10.1093/sysbio/syt049.
Chifman J, Kubatko L. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. J Theor Biol. 2015;374:35–47. https://doi.org/10.1016/j.jtbi.2015.03.006.
Swofford DL. Paup*: phylogenetic analysis using parsimony (*and other methods), version 4.0a147. Massachusetts: Sinauer, Sunderland; 2003.
Mirarab S, Reaz R, Bayzid MS, Zimmerman T, Swenson MS, Warnow T. Astral: genome-scale coalescent-based species tree estimation. Bioinformatics. 2014;30:i541. https://doi.org/10.1093/bioinformatics/btu462.
Bayzid MS, Warnow T. Naive binning improves phylogenomic analyses. Bioinformatics. 2013;29:2277–84. https://doi.org/10.1093/bioinformatics/btt394.
Eaton DA, Hipp AL, González-Rodríguez A, Cavender-Bares J. Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution. 2015;69:2587–601. https://doi.org/10.1111/evo.12758.
Pease JB, Hahn MW. Detection and polarization of introgression in a five-taxon phylogeny. Syst Biol. 2015;64:651–62. https://doi.org/10.1093/sysbio/syv023.
Turner TF, Wilson WD. Conserv Genet of Zuni bluehead sucker (Catostomus discobolus yarrowi) in New Mexico. In: Final Report. New Mexico: Department of Game and Fish; Conservation Services Division; 2009. p. 23. https://www.researchgate.net/publication/228390080_Conservation_genetics_of_Zuni_bluehead_sucker_Catostomus_discobolus_yarrowi_in_New_Mexico.
Warren ML, Burr BM. Freshwater fishes of North America: volume 1: Petromyzontidae to Catostomidae. Baltimiore: Johns Hopkins University Press; 2014.
McCormack JE, Heled J, Delaney KS, Peterson AT, Knowles LL. Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution. 2011;65:184–202. https://doi.org/10.1111/j.1558-5646.2010.01097.x.
Springer MS, Gatesy J. The gene tree delusion. Mol Phylogenet Evol. 2016;94:1–33. https://doi.org/10.1016/j.ympev.2015.07.018.
Solís-Lemus C, Yang M, Ané C. Inconsistency of species-tree methods under gene flow. Syst Biol. 2016;65(5):843–51. https://doi.org/10.1093/sysbio/syw030.
Doosey MH, Bart Jr HL, Saitoh K, Miya M. Phylogenetic relationships of catostomid fishes (Actinopterygii: Cypriniformes) based on mitochondrial ND4/ND5 gene sequences. Mol Phylogenet Evol. 2010;54:1028–34. https://doi.org/10.1016/j.ympev.2009.06.006.
Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nature Rev Genet. 2010;11:697–709. https://doi.org/10.1038/nrg2844.
Frankham R. Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv. 2010;143:1919–27. https://doi.org/10.1016/j.biocon.2010.05.011.
Carstens BC, Lemmon AR, Lemmon EM. The promises and pitfalls of next-generation sequencing data in phylogeography. Syst Biol. 2012;61:713–5. https://doi.org/10.1093/sysbio/sys050.
Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol. 2013;22:4369–83. https://doi.org/10.1111/mec.12413.
McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol. 2013;66:526–38. https://doi.org/10.1016/j.ympev.2011.12.007.
Steiner CC, Putnam AS, Hoeck PE, Ryder OA. Conservation genomics of threatened animal species. Annu Rev Anim Biosci. 2013;1:261–81. https://doi.org/10.1146/annurev-animal-031412-103636.
Eigenmann CH, Eigenmann RS. Preliminary description of new fishes from the northwest. Am Nat. 1893;27:151–4. https://www.jstor.org/stable/i319998
Hubbs CL, Schultz LP. A New catostomid fish from the Columbia River. Univ Washington Publ Biol. 1932;2:1–13.
Hopken MW, Douglas MR, Douglas ME. Stream hierarchy defines riverscape genetics of a north American desert fish. Mol Ecol. 2013;22:956–71. https://doi.org/10.1111/mec.12156.
Duffield W, Riggs N, Kaufman D, Champion D, Fenton C, Forman S, et al. Multiple constraints on the age of a Pleistocene lava dam across the little Colorado River at grand falls, Arizona. Geol Soc Am Bull. 2006;118:421–9. https://doi.org/10.1130/B25814.1.
Minckley WL, Carufel LH. The little Colorado River Spinedace, Lepidomeda vittata, in Arizona. Southwest Nat. 1967;12:291–302. https://doi.org/10.2307/3669115.
Miller RR. Threatened freshwater fishes of the United States. Trans Am Fisheries Soc. 1972;101:239–52. https://doi.org/10.1577/1548-8659(1972)101%5B239:TFFOTU%5D2.0.CO;2.
Minckley WL. Fishes of Arizona. Arizona Game and Fish Department: Phoenix; 1973.
Cope ED, Yarrow HC. Report upon the collections of fishes made in portions of Nevada, Utah, California, Colorado, New Mexico, and Arizona, during the years 1871, 1972, 1873, and 1874. In: Rept Geog Geol Exp. Surv W 100th Meridian (Wheeler Survey), vol. 5; 1875. p. 635–703.
Federal Register. Endangered and threatened wildlife and plants; proposed designation of critical habitat for the Zuni Bluehead Sucker 2014;78:5351. https://www.federalregister.gov/documents/2015/04/14/2015-08277/endangered-and-threatened-wildlife-and-plants-designation-of-critical-habitat-for-the-zuni-bluehead.
Smith GR, Hall JG, Koehn RK, Innes DJ. Taxonomic relationships of the Zuni mountain sucker, Catostomus discobolus yarrowi. Copeia. 1983;1983(1):37–48. https://doi.org/10.2307/1444696.
Crabtree CB, Buth DG. Biochemical systematics of the catostomid genus Catostomus: assessment of C. clarki, C. plebeius and C. discobolus including the Zuni sucker, C. d. yarrowi. Copeia. 1987;1987(4):843–54. https://doi.org/10.2307/1445546.
Miller RR. Bait fishes of the lower Colorado River from Lake mead, Nevada, to Yuma, Arizona, with a key for their identification. Calif Fish Game. 1952;38:7–42.
Minckley WL. Morphological variation in catostomid fishes of the Grand Canyon Region, middle Colorado River basin. In: Final Report. Grand Canyon National Park: US National Park Service; 1980.
Roure B, Baurain D, Philippe H. Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. Mol Biol Evol. 2013;30:197–214. https://doi.org/10.1093/molbev/mss208.