Mất khả năng tiếp nhận amoniac chưa từng thấy ở một vi khuẩn đối tác mã hóa urease

Springer Science and Business Media LLC - Tập 11 - Trang 1-14 - 2010
Laura E Williams1, Jennifer J Wernegreen1
1The Institute for Genome Sciences and Policy, Duke University, Durham, USA

Tóm tắt

Blochmannia là những vi khuẩn đồng sinh sống bắt buộc trong tế bào của kiến thuộc bộ tộc Camponotini. Blochmannia thực hiện các chức năng dinh dưỡng quan trọng cho vật chủ, bao gồm tổng hợp một số amino acid thiết yếu. Chúng tôi đã sử dụng công nghệ Illumina để giải trình tự gen của Blochmannia liên quan đến Camponotus vafer. Mặc dù Blochmannia vafer vẫn giữ nhiều chức năng dinh dưỡng, nhưng vi khuẩn này thiếu glutamine synthetase (glnA), một thành phần trong con đường tái chế nitơ đã được mã hóa bởi B. floridanus và B. pennsylvanicus được giải trình tự trước đó. Ngoại trừ Ureaplasma, B. vafer là vi khuẩn duy nhất đã được giải trình tự đến nay mã hóa urease nhưng thiếu khả năng chuyển hóa amoniac thành glutamine hoặc glutamate. Sự mất mát của glnA xảy ra ở một điểm xóa gần vị trí tái bản giả thuyết. Tổng thể, so với bộ gen có khả năng của tổ tiên chung của chúng, 31 gen bị thiếu hoặc bị xói mòn ở B. vafer, trong khi đó có 28 ở B. floridanus và bốn ở B. pennsylvanicus. Ba gen (queA, visC và yggS) cho thấy sự mất mát hoặc xói mòn tương đồng, gợi ý sự chọn lọc nhẹ nhàng cho chức năng của chúng. Tám gen của B. vafer có các khung dịch chuyển trong các đoạn polyme đơn có thể được sửa chữa bằng sự trượt phiên mã. Hai trong số đó mã hóa protein tái bản DNA: dnaX, mà chúng tôi suy luận cũng bị dịch chuyển khung trong B. floridanus, và dnaG. So sánh bộ gen của B. vafer với B. pennsylvanicus và B. floridanus làm tinh chỉnh các gen lõi được chia sẻ trong nhóm đối tác, từ đó làm rõ các chức năng cần thiết giữa các loài chủ kiến. Bộ gen thứ ba này cũng cho phép chúng tôi theo dõi mất mát và xói mòn gen trong bối cảnh phát sinh chủng loại để hiểu rõ hơn về các quy trình giảm thiểu bộ gen.

Từ khóa

#Blochmannia #amoniac #urease #gen #vi khuẩn đồng sinh sống #Camponotus vafer

Tài liệu tham khảo

Sauer C, Stackebrandt E, Gadau J, Holldobler B, Gross R: Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol. 2000, 50 (Pt 5): 1877-1886. Blochman F: Über das Vorkommen von bakterienähnlichen Gebilden in den Geweben und Eiern verschiedener Insekten. Zentbl Bakteriol. 1882, 11: 234-240. Wernegreen JJ, Kauppinen SN, Brady SG, Ward PS: One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evol Biol. 2009, 9: 292-10.1186/1471-2148-9-292. Schroder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Holldobler B, Goebel W, Gross R: Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): Systematics, evolution and ultrastructural characterization. Mol Microbiol. 1996, 21 (3): 479-489. 10.1111/j.1365-2958.1996.tb02557.x. Buchner P: Endosymbiosis of Animals with Plant Microorganisms. 1965, New York: Interscience Publishers, Inc Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B, et al: The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA. 2003, 100 (16): 9388-9393. 10.1073/pnas.1533499100. Degnan PH, Lazarus AB, Wernegreen JJ: Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res. 2005, 15 (8): 1023-1033. 10.1101/gr.3771305. Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, Gross R: Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 2007, 5: 48-10.1186/1741-7007-5-48. Zientz E, Dandekar T, Gross R: Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev. 2004, 68 (4): 745-770. 10.1128/MMBR.68.4.745-770.2004. Moran NA, McCutcheon JP, Nakabachi A: Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008, 42: 165-190. 10.1146/annurev.genet.41.110306.130119. van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernandez JM, Jimenez L, Postigo M, Silva FJ, et al: Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA. 2003, 100 (2): 581-586. 10.1073/pnas.0235981100. Mira A, Ochman H, Moran NA: Deletional bias and the evolution of bacterial genomes. Trends Genet. 2001, 17 (10): 589-596. 10.1016/S0168-9525(01)02447-7. Pal C, Papp B, Lercher MJ, Csermely P, Oliver SG, Hurst LD: Chance and necessity in the evolution of minimal metabolic networks. Nature. 2006, 440 (7084): 667-670. 10.1038/nature04568. Moran NA, McLaughlin HJ, Sorek R: The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science. 2009, 323 (5912): 379-382. 10.1126/science.1167140. Tamas I, Wernegreen JJ, Nystedt B, Kauppinen SN, Darby AC, Gomez-Valero L, Lundin D, Poole AM, Andersson SG: Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci USA. 2008, 105 (39): 14934-14939. 10.1073/pnas.0806554105. Wernegreen JJ, Kauppinen SN, Degnan PH: Slip into something more functional: selection maintains ancient frameshifts in homopolymeric sequences. Mol Biol Evol. 2010, 27 (4): 833-839. 10.1093/molbev/msp290. Bolton B, Alpert G, Ward PS, Naskrecki P: Bolton's Catalogue of Ants of the World: 1758-2005. 2006, Cambridge, MA: Harvard University Press Snelling RR: Taxonomy of the Camponotus festinatus complex in the United States of America (Hymenoptera: Formicidae). Myrmecologische Nachrichten. 2006, 8: 83-97. Lee MH, Mulrooney SB, Renner MJ, Markowicz Y, Hausinger RP: Klebsiella aerogenes urease gene cluster: sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J Bacteriol. 1992, 174 (13): 4324-4330. Reitzer L: Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol. 2003, 57: 155-176. 10.1146/annurev.micro.57.030502.090820. Smith DG, Russell WC, Ingledew WJ, Thirkell D: Hydrolysis of urea by Ureaplasma urealyticum generates a transmembrane potential with resultant ATP synthesis. J Bacteriol. 1993, 175 (11): 3253-3258. Blinkowa AL, Walker JR: Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase-III gamma subunit from within the gamma-subunit reading frame. Nucleic Acids Res. 1990, 18 (7): 1725-1729. 10.1093/nar/18.7.1725. Flower AM, Mchenry CS: The gamma-subunit of DNA polymerase-III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA. 1990, 87 (10): 3713-3717. 10.1073/pnas.87.10.3713. Tsuchihashi Z, Kornberg A: Translational frameshifting generates the gamma-subunit of DNA Polymerase-III holoenzyme. Proc Natl Acad Sci USA. 1990, 87 (7): 2516-2520. 10.1073/pnas.87.7.2516. McHenry CS: Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol. 2003, 49 (5): 1157-1165. 10.1046/j.1365-2958.2003.03645.x. Das G, Varshney U: Peptidyl-tRNA hydrolase and its critical role in protein biosynthesis. Microbiology. 2006, 152 (Pt 8): 2191-2195. 10.1099/mic.0.29024-0. Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW: Phylogeny of Gammaproteobacteria. J Bacteriol. 2010, 192 (9): 2305-2314. 10.1128/JB.01480-09. Nakamura T, Katoh Y, Shimizu Y, Matsuba Y, Unemoto T: Cloning and sequencing of novel genes from Vibrio alginolyticus that support the growth of K+ uptake-deficient mutant of Escherichia coli. Biochim Biophys Acta. 1996, 1277 (3): 201-208. 10.1016/S0005-2728(96)00097-7. Ito T, Uozumi N, Nakamura T, Takayama S, Matsuda N, Aiba H, Hemmi H, Yoshimura T: The implication of YggT of Escherichia coli in osmotic regulation. Biosci, Biotechnol, Biochem. 2009, 73 (12): 2698-2704. 10.1271/bbb.90558. Treangen TJ, Abraham AL, Touchon M, Rocha EP: Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev. 2009, 33 (3): 539-571. 10.1111/j.1574-6976.2009.00169.x. Gomez-Valero L, Latorre A, Gil R, Gadau J, Feldhaar H, Silva FJ: Patterns and rates of nucleotide substitution, insertion and deletion in the endosymbiont of ants Blochmannia floridanus. Mol Ecol. 2008 Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, et al: Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science. 2010, 329 (5995): 1068-1071. 10.1126/science.1192428. Rubino SD, Nyunoya H, Lusty CJ: In vivo synthesis of carbamyl phosphate from NH3 by the large subunit of Escherichia coli carbamyl phosphate synthetase. J Biol Chem. 1987, 262 (9): 4382-4386. Lopez-Sanchez MJ, Neef A, Pereto J, Patino-Navarrete R, Pignatelli M, Latorre A, Moya A: Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet. 2009, 5 (11): e1000721-10.1371/journal.pgen.1000721. Sabree ZL, Kambhampati S, Moran NA: Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci USA. 2009, 106 (46): 19521-19526. 10.1073/pnas.0907504106. Glass JI, Lefkowitz EJ, Glass JS, Heiner CR, Chen EY, Cassell GH: The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature. 2000, 407 (6805): 757-762. 10.1038/35037619. Wernegreen JJ, Lazarus AB, Degnan PH: Small genome of Candidatus Blochmannia, the bacterial endosymbiont of Camponotus, implies irreversible specialization to an intracellular lifestyle. Microbiology. 2002, 148 (Pt 8): 2551-2556. Zerbino DR, Birney E: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18 (5): 821-829. 10.1101/gr.074492.107. Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res. 1998, 8 (3): 195-202. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8 (3): 186-194. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998, 8 (3): 175-185. Mosaik. [http://bioinformatics.bc.edu/marthlab/Mosaik] Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25 (5): 955-964. 10.1093/nar/25.5.955. Mrazek J, Xie SH: Pattern locator: a new tool for finding local sequence patterns in genomic DNA sequences. Bioinformatics. 2006, 22 (24): 3099-3100. 10.1093/bioinformatics/btl551. Schaper S, Messer W: Interaction of the initiator protein DnaA of Escherichia coli with Its DNA target. J Biol Chem. 1995, 270 (29): 17622-17626. 10.1074/jbc.270.29.17622. Grant JR, Stothard P: The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36: W181-W184. 10.1093/nar/gkn179. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al: The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008, 9: 75-10.1186/1471-2164-9-75. Wall DP, Fraser HB, Hirsh AE: Detecting putative orthologs. Bioinformatics. 2003, 19 (13): 1710-1711. 10.1093/bioinformatics/btg213. Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997, 13 (5): 555-556.