Tính duy nhất cho bài toán giá trị biên ngược với các tiềm năng đặc biệt trong không gian 2 chiều

Mathematische Zeitschrift - Tập 295 - Trang 1521-1535 - 2019
Emilia Blåsten1,2, Leo Tzou3, Jenn-Nan Wang4
1HKUST Jockey Club Institute for Advanced Study, Clear Water Bay, Hong Kong
2Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
3Faculty of Science, University of Sydney, Sydney, Australia
4Institute of Applied Mathematical Sciences, NCTS, National Taiwan University, Taipei, Taiwan

Tóm tắt

Trong bài báo này, chúng tôi xem xét bài toán giá trị biên ngược cho phương trình Schrödinger với tiềm năng thuộc lớp $$L^p$$, $$p>4/3$$. Chúng tôi chỉ ra rằng tiềm năng được xác định duy nhất bởi các phép đo tại biên.

Từ khóa

#bài toán giá trị biên ngược #phương trình Schrödinger #tiềm năng đặc biệt #lớp Lp #tính duy nhất

Tài liệu tham khảo

Amrein, W., Berthier, A., Georgescu, V.: \({L}^p\)-inequalities for the laplacian and unique continuation. Annales de l’institut Fourier 31(3), 153–168 (1981) Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. In: Princeton Mathematical Series, vol. 48. Princeton University Press, Princeton (2009) Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. (2) 163(1), 265–299 (2006) Blåsten, E.: On the Gel’fand–Calderón inverse problem in two dimensions. Doctoral Thesis, University of Helsinki, Finland (2013) Blåsten, E., Imanuvilov, O.Y., Yamamoto, M.: Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Probl Imaging 9(3), 709–723 (2015) Brown, R., Uhlmann, G.: Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions. Commun. Partial Differ. Equ. 22(5–6), 1009–1027 (1997) Bukhgeim, A.L.: Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill-Posed Probl. 16(1), 19–33 (2008) Carstea, C.I., Wang, J.-N.: Uniqueness for the two dimensional calderón’s problem with unbounded conductivities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18(4), 1459–1482 (2018) Ferreira, D.D.S., Kenig, C.E., Salo, M.: Determining an unbounded potential from cauchy data in admissible geometries. Commun. Partial Differ. Equ. 38(1), 50–68 (2013) Haberman, B.: Unique determination of a magnetic Schrödinger operator with unbounded magnetic potential from boundary data. Int. Math. Res. Not. 4, 1080–1128 (2016) Imanuvilov, O.Y., Yamamoto, M.: Inverse boundary value problem for Schrödinger equation in two dimensions. SIAM J. Math. Anal. 44(3), 1333–1339 (2012) Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121(3), 463–488 (1985) Lakshtanov, E., Vainberg, B.: Recovery of \({L}^p\)-potential in the plane. J. Inverse Ill-Posed Probl. 25, 633–651 (2017) Nachman, A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. (2) 143(1), 71–96 (1996) Nachman, A.I., Regev, I., Tataru, D.I.: A nonlinear plancherel theorem with applications to global well-posedness for the defocusing davey-stewartson equation and to the inverse boundary value problem of calderón. arXiv:1708.04759v2 [math.AP] (2017) Saut, J., Scheurer, B.: Un théorème de prolongement unique pour des opérators elliptiques dont les coefficients ne sont pas localement bornés. C.R.A.S. Paris 290A, 595–598 (1980) Serov, V.S., Päivärinta, L.: New estimates of the Green–Faddeev function and recovering of singularities in the two-dimensional Schrödinger operator with fixed energy. Inverse Probl. 21(4), 1291–1301 (2005) Sun, Z.: On an inverse boundary value problem in two dimensions. Commun. Partial Differ. Equ. 14, 1101–1113 (1989) Sun, Z.: The inverse conductivity problem in two dimensions. J. Differ. Equ. 87, 227–255 (1990) Sun, Z., Uhlmann, G.: Generic uniqueness for an inverse boundary value problem. Duke Math. J. 62, 131–155 (1991) Sun, Z., Uhlmann, G.: Inverse scattering for singular potentials in two dimensions. Trans. Am. Math. Soc. 338(1), 363–374 (1993) Sun, Z., Uhlmann, G.: Recovery of singularities for formally determined inverse problems. Commun. Math. Phys. 153, 431–445 (1993) Sylvester, J., Uhlmann, G.: A uniqueness theorem for an inverse boundary value problem in electrical prospection. Commun. Pure Appl. Math. 39, 91–112 (1986) Vekua, I.N.: Generalized Analytic Functions. Pergamon Press, London (1962). Translation from the 1959 Russian edition