Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

Computational Mechanics - Tập 59 - Trang 483-505 - 2016
Van-Dung Nguyen1, Ling Wu1, Ludovic Noels1
1Computational & Multiscale Mechanics of Materials, University of Liege, Liège, Belgium

Tóm tắt

This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

Tài liệu tham khảo

Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143. doi:10.1016/0045-7825(90)90148-F Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181 Miehe C, Schotte J, Schrder J (1999) Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci 16(1–4):372 Michel J, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1–4):109. doi:10.1016/S0045-7825(98)00227-8 Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309 Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scalecomputational homogenization: trends and challenges. J Comput Appl Math 234(7): 2175. doi: 10.1016/j.cam.2009.08.077. Fourth international conference on advanced computational methods in engineering (ACOMEN 2008) Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37. doi:10.1007/s004660000212 Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72(4):300. doi:10.1007/s00419-002-0212-2 Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element forrandom composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647. doi:10.1016/S0020-7683(03)00143-4 Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525. doi:10.1016/j.cma.2003.12.073 Kaczmarczyk L, Pearce CJ, Bićanić N (2008) Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. Int J Numer Methods Eng 74(3):506. doi:10.1002/nme.2188 Peric D, de Souza Neto EA, Feijóo RA, Partovi M, Molina AJC (2010) On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Int J Numer Methods Eng. doi:10.1002/nme.3014 Nguyen VD, Noels L (2014) Computational homogenization of cellular materials. Int J Solids Struct 51(1112):2183. doi:10.1016/j.ijsolstr.2014.02.029 Bosco E, Kouznetsova VG, Geers MGD (2015) Multi-scale computational homogenization localization for propagating discontinuities using X-FEM. Int J Numer Methods Eng 102(3–4):496. doi:10.1002/nme.4838 Özdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185. doi:10.1002/nme.2068 Monteiro E, Yvonnet J, He Q (2008) Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput Mater Sci 42(2):704. doi:10.1016/j.commatsci.2007.11.001 Özdemir I, Brekelmans W, Geers M (2008) Computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198(34):602. doi:10.1016/j.cma.2008.09.008 Temizer I, Wriggers P (2011) Homogenization in finite thermoelasticity. J Mech Phys Solids 59(2):344. doi:10.1016/j.jmps.2010.10.004 Sengupta A, Papadopoulos P, Taylor RL (2012) A multiscale finite element method for modeling fully coupled thermomechanical problems in solids. Int J Numer Methods Eng 91(13):1386. doi:10.1002/nme.4320 Schröder J, Keip MA (2010) A framework for the two-scale homogenization of electro-mechanically coupled boundary value problems. In: Kuczma M, Wilmanski K (eds) Computer methods in mechanics, advanced structured materials, vol 1. Springer, Berlin, pp 311–329 Keip MA, Steinmann P, Schröder J (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62. doi:10.1016/j.cma.2014.04.020 Schröder J, Keip MA (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229 Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50(2526):4197. doi:10.1016/j.ijsolstr.2013.08.024 Miehe C, Vallicotti D, Teichtmeister S (2015) Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. GAMM-Mitteilungen 38(2):313. doi:10.1002/gamm.201510017 Schröder, J, Labusch, M, Keip, MA (2015) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: localization and homogenization. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2015.10.005 Khisaeva ZF, Ostoja-Starzewski M (2006) On the size of RVE in finite elasticity of random composites. J Elast 85(2):153. doi:10.1007/s10659-006-9076-y Ostoja-Starzewski M (2006d) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112. doi:10.1016/j.probengmech.2005.07.007 Hoang T, Guerich M, Yvonnet J (2015) Determining the size of RVE for nonlinear random composites in an incremental computational homogenization framework. J Eng Mech (Accepted). https://hal-upec-upem.archives-ouvertes.fr/hal-01228966 Wismans JGF, Govaert LE, van Dommelen JAW (2010) X-ray computed tomography-based modeling of polymeric foams: the effect of finite element model size on the large strain response. J Polym Sci Part B 48(13):1526. doi:10.1002/polb.22055 Legrain G, Cartraud P, Perreard I, Moes N (2011) An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915. doi:10.1002/nme.3085 Kumar H, Briant C, Curtin W (2006) Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mech Mater 38(810):818. doi:10.1016/j.mechmat.2005.06.030 Sonon B, François B, Massart TJ (2015) An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comput Mech 56(2):221. doi:10.1007/s00466-015-1168-8 Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2010) On the existence of representative volumes for softening quasi-brittle materials—a failure zone averaging scheme. Comput Methods Appl Mech Eng 199(4548):3028. doi:10.1016/j.cma.2010.06.018 Nguyen VP, Lloberas-Valls O, Stroeven M, Sluys LJ (2012) Computational homogenization for multiscale crack modeling. Implementational and computational aspects. Int J Numer Methods Eng 89(2):192. doi:10.1002/nme.3237 Coenen E, Kouznetsova V, Geers M (2012) Novel boundary conditions for strain localization analyses in microstructural volume elements. Int J Numer Methods Eng 90(1):1. doi:10.1002/nme.3298 Wu L, Tjahjanto D, Becker G, Makradi A, Jérusalem A, Noels L (2013) A micro meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Eng Fract Mech 104:162. doi:10.1016/j.engfracmech.2013.03.018 Mosby M, Matouš K (2015) On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver. Model Simul Mater Sci Eng 23(8): 085014. http://stacks.iop.org/0965-0393/23/i=8/a=085014 Ostoja-Starzewski M, Wang X (1999) Stochastic finite elements as a bridge between random material microstructure and global response. Comput Methods Appl Mech Eng 168(14):35. doi:10.1016/S0045-7825(98)00105-4 Yin X, Chen W, To A, McVeigh C, Liu W (2008) Statistical volume element method for predicting microstructure constitutive property relations. Comput Methods Appl Mech Eng 197(43–44):3516. doi:10.1016/j.cma.2008.01.008 Liebscher A, Proppe C, Redenbach C, Schwarzer D (2012) Uncertainty quantification for metal foam structures by means of image analysis. Probab Eng Mech 28:143. doi:10.1016/j.probengmech.2011.08.015 Stefanou G, Savvas D, Papadrakakis M (2015) Stochastic finite element analysis of composite structures based on material microstructure. Compos Struct 132:384. doi:10.1016/j.compstruct.2015.05.044 Trovalusci P, De Bellis ML, Ostoja-Starzewski M, Murrali A (2014) Particulate random composites homogenized as micropolar materials. Meccanica 49(11):2719 Trovalusci P, Ostoja-Starzewski M, De Bellis ML, Murrali A (2015) Scale-dependent homogenization of random composites as micropolar continua. Eur J Mech A Solids 49:396 Ma J, Sahraee S, Wriggers P, De Lorenzis L (2015) Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure. Comput Mech 55(5):819. doi:10.1007/s00466-015-1136-3 Pivovarov D, Steinmann P (2016) Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties. Comput Mech 57(1):123 Yin X, Lee S, Chen W, Liu WK, Horstemeyer MF (2009) Efficient random field uncertainty propagation in design using multiscale analysis. J Mech Des 131(2):021006. doi:10.1115/1.3042159 Lucas V, Golinval JC, Paquay S, Nguyen VD, Noels L, Wu L (2015) A stochastic computational multiscale approach; application to MEMS resonators. Comput Methods Appl Mech Eng 294:141. doi:10.1016/j.cma.2015.05.019 Wu L, Lucas V, Nguyen VD, Golinval JC, Paquay S, Noels L (2016) A stochastic multi-scale approach for the modeling of thermo-elastic damping in micro-resonators. Comput Methods Appl Mech Eng 310:802. doi:10.1016/j.cma.2016.07.042 Mesarovic SD, Padbidri J (2005) Minimal kinematic boundary conditions for simulations of disordered microstructures. Philos Mag 85(1):65. doi:10.1080/14786430412331313321 Nguyen VD, Béchet E, Geuzaine C, Noels L (2012) Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput Mater Sci 55:390. doi:10.1016/j.commatsci.2011.10.017 Matouš K, Kulkarni MG, Geubelle PH (2008) Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solids 56(4):1511. doi:10.1016/j.jmps.2007.08.005 Hirschberger C, Ricker S, Steinmann P, Sukumar N (2009) Computational multiscale modelling of heterogeneous material layers. Eng Fract Mech 76(6):793. doi:10.1016/j.engfracmech.2008.10.018 Hazanov S, Amieur M (1995) On overall properties of elastic heterogeneous bodies smaller than the representative volume. Int J Eng Sci 33(9):1289. doi:10.1016/0020-7225(94)00129-8 Pahr DH, Zysset PK (2007) Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech Model Mechanobiol 7(6):463. doi:10.1007/s10237-007-0109-7 Mercer BS, Mandadapu KK, Papadopoulos P (2015) Novel formulations of microscopic boundary-value problems in continuous multiscale finite element methods. Comput Methods Appl Mech Eng 286:268. doi:10.1016/j.cma.2014.12.021 Inglis HM, Geubelle PH, Matouš K (2008) Boundary condition effects on multiscale analysis of damage localization. Philos Mag 88(16):2373. doi:10.1080/14786430802345645 Ainsworth M (2001) Essential boundary conditions and multi-point constraints in finite element analysis. Comput Methods Appl Mech Eng 190(48):6323. doi:10.1016/S0045-7825(01)00236-5 van Dijk NP (2015) Formulation and implementation of stress- and/or strain-driven computational homogenization for finite strain. Int J Numer Methods Eng. doi:10.1002/nme.5198 Nguyen VD, Becker G, Noels L (2013) Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous Galerkin formulation. Comput Methods Appl Mech Eng 260:63. doi:10.1016/j.cma.2013.03.024 Mosby M, Matouš K (2015) On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver. Int J Numer Methods Eng 102(3–4):748. doi:10.1002/nme.4755 Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134(34):223. doi:10.1016/0045-7825(96)01019-5 Tyrus JM, Gosz M, DeSantiago E (2007) A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models. Int J Solids Struct 44(9):2972. doi:10.1016/j.ijsolstr.2006.08.040 Wismans J (2011) Computed tomography-based modeling of structured polymers. Computed tomography-based modeling of structured polymers. Ph.D. thesis, Technische Universiteit Eindhoven Yuan Z, Fish J (2008) Toward realization of computational homogenization in practice. Int J Numer Methods Eng 73(3):361. doi:10.1002/nme.2074 McConnell A, Uma S, Goodson KE (2001) Thermal conductivity of doped polysilicon layers. J Microelectromech Syst 10(3):360 Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41. doi:10.1016/0045-7825(92)90170-O Adam L, Ponthot JP (2005) Thermomechanical modeling of metals at finite strains: first and mixed order finite elements. Int J Solids Struct 42(2122):5615. doi:10.1016/j.ijsolstr.2005.03.020 Eterovic AL, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Numer Methods Eng 30(6):1099. doi:10.1002/nme.1620300602 Cuitiño A, Ortiz M (1992) A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng Comput 9:437. doi:10.1108/eb023876