Hiểu rõ cơ chế của quá trình pyrolysis nhanh xúc tác qua việc làm sáng tỏ các trung gian phản ứng trong xúc tác dị thể

Nature Communications - Tập 8 Số 1
Patrick Hemberger1, Victoria B. F. Custodis2, András Bödi1, T. Gerber3, Jeroen A. van Bokhoven4
1Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute, Villigen-PSI, CH-5232, Switzerland
2Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, HCI E 127, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
3Molecular Dynamics Group, Paul Scherrer Institute, Villigen-PSI, CH-5232, Switzerland
4Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, OSUA/201, Villigen-PSI, CH-5232, Switzerland

Tóm tắt

Tóm tắtPyrolysis nhanh xúc tác là một phương pháp hứa hẹn để chuyển đổi lignin thành các hóa chất và nhiên liệu tinh khiết, nhưng các phương pháp hiện tại còn thiếu tính chọn lọc và cho ra hiệu suất chuyển đổi không đạt yêu cầu. Hiểu rõ cơ chế phản ứng pyrolysis ở cấp độ phân tử có thể giúp cho quá trình bền vững này trở nên kinh tế hơn. Các trung gian phản ứng là nguyên nhân dẫn đến sự nhánh sản phẩm và giữ vai trò then chốt trong việc làm sáng tỏ các cơ chế này, nhưng lại cực kỳ khó phát hiện một cách chọn lọc isomer. Tại đây, chúng tôi nghiên cứu quá trình pyrolysis xúc tác của guaiacol, một hợp chất mô hình lignin, sử dụng quang phổ đồng co sắc điện tử kết hợp với bức xạ đồng bộ, cho phép phát hiện chọn lọc isomer của các trung gian phản ứng. Kết hợp với pyrolysis áp suất môi trường, chúng tôi xác định fulvenone là trung gian phản ứng chính, được tạo ra thông qua quá trình demethyl hóa xúc tác thành catechol và quá trình khử nước tiếp theo. Ketene fulvenone là nguyên nhân hình thành phenol. Kỹ thuật này có thể mở ra những cơ hội độc đáo cho việc khảo sát có chọn lọc các isomer trong xúc tác, và có tiềm năng đạt được sự hiểu biết về cơ chế của các quá trình xúc tác phức tạp trong thực tế.

Từ khóa

#pyrolysis nhanh xúc tác #lignin #trung gian phản ứng #guaiacol #xúc tác dị thể

Tài liệu tham khảo

Szabó, I. & Czakó, G. Revealing a double-inversion mechanism for the F‐+CH3Cl SN2 reaction. Nat. Commun. 6, 5972 (2015).

Xie, J. & Hase, W. L. Rethinking the sn2 reaction. Science 352, 32–33 (2016).

Savee, J. D. et al. Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH). Science 347, 643–646 (2015).

Bordiga, S., Groppo, E., Agostini, G., van Bokhoven, J. A. & Lamberti, C. Reactivity of surface species in heterogeneous catalysts probed by in situ x-ray absorption techniques. Chem. Rev. 113, 1736–1850 (2013).

Risse, T., Hollmann, D. & Bruckner, A. in Catalysis Vol. 27, 1–32The Royal Society of Chemistry, (2015).

Schlücker, S. Surface-enhanced raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).

Taatjes, C. A. et al. ‘Imaging’ combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry. Phys. Chem. Chem. Phys. 10, 20–34 (2008).

Bodi, A., Hemberger, P., Osborn, D. L. & Sztáray, B. Mass-resolved isomer-selective chemical analysis with imaging photoelectron photoion coincidence spectroscopy. J. Phys. Chem. Lett. 4, 2948–2952 (2013).

Liang, S. et al. Elucidating the thermal decomposition of dimethyl methylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms. Chem. Eur. J. 21, 1073–1080 (2015).

Hemberger, P., Trevitt, A. J., Ross, E. & da Silva, G. Direct observation of para-xylylene as the decomposition product of the meta-xylyl radical using vuv synchrotron radiation. J. Phys. Chem. Lett. 4, 2546–2550 (2013).

Oßwald, P. et al. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy. Rev. Sci. Instrum. 85, 025101 (2014).

Kruger, J. et al. Photoelectron-photoion coincidence spectroscopy for multiplexed detection of intermediate species in a flame. Phys. Chem. Chem. Phys. 16, 22791–22804 (2014).

Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015).

Zhou, G., Jensen, P. A., Le, D. M., Knudsen, N. O. & Jensen, A. D. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst. Green Chem. 18, 1965–1975 (2016).

Thilakaratne, R., Tessonnier, J.-P. & Brown, R. C. Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites. Green Chem. 18, 2231–2239 (2016).

Vispute, T. P., Zhang, H., Sanna, A., Xiao, R. & Huber, G. W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330, 1222–1227 (2010).

Ma, Z., Troussard, E. & van Bokhoven, J. A. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl. Catal. A 423–424, 130–136 (2012).

Foster, A. J., Jae, J., Cheng, Y.-T., Huber, G. W. & Lobo, R. F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl. Catal. A 423–424, 154–161 (2012).

Chen, L. et al. Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chem. 18, 2341–2352 (2016).

Lee, H. et al. Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci. Rep. 6, 28765 (2016).

Lee, K., Gu, G. H., Mullen, C. A., Boateng, A. A. & Vlachos, D. G. Guaiacol hydrodeoxygenation mechanism on Pt(111): insights from density functional theory and linear free energy relations. ChemSusChem. 8, 315–322 (2015).

Ted Oyama, S. et al. Production of phenol and cresol from guaiacol on nickel phosphide catalysts supported on acidic supports. Top Catal. 58, 201–210 (2015).

Xiao, Y. & Varma, A. Catalytic deoxygenation of guaiacol using methane. ACS Sustain. Chem. Eng. 3, 2606–2610 (2015).

Cheah, S., Starace, A. K., Gjersing, E., Bernier, S. & Deutch, S. Reactions of mixture of oxygenates found in pyrolysis vapors: deoxygenation of hydroxyacetaldehyde and guaiacol catalyzed by HZSM-5. Top Catal. 59, 109–123 (2016).

Zhang, H., Wang, Y., Shao, S. & Xiao, R. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation. Sci. Rep. 6, 37513 (2016).

Gleaves, J. T., Ebner, J. R. & Kuechler, T. C. Temporal Analysis of Products (TAP)—a unique catalyst evaluation system with submillisecond time resolution. Catal. Rev.-Sci. Eng. 30, 49 (1988).

Luo, L. et al. Methyl radicals in oxidative coupling of methane directly confirmed by synchrotron VUV photoionization mass spectroscopy. Sci. Rep. 3, 1625 (2013).

Mallens, E. P. J., Hoebink, J. H. B. J. & Marin, G. B. in Natural Gas Conversions II eds Curry-Hyde H. E., How R. F.) 205, (Elsevier Science B. V. (1994).

Bierkandt, T., Hemberger, P., Oßwald, P., Köhler, M. & Kasper, T. Insights in m-xylene decomposition under fuel-rich conditions by imaging photoelectron photoion coincidence spectroscopy. Proc. Combust. Inst. 36, 1223–1232 (2017).

Hemberger, P., da Silva, G., Trevitt, A. J., Gerber, T. & Bodi, A. Are the three hydroxyphenyl radical isomers created equal? - the role of the phenoxy radical. Phys. Chem. Chem. Phys. 17, 30076–30083 (2015).

Hemberger, P., Trevitt, A. J., Gerber, T., Ross, E. & da Silva, G. Isomer-specific product detection of gas-phase xylyl radical rearrangement and decomposition using VUV synchrotron photoionization. J. Phys. Chem. A 118, 3593–3604 (2014).

Bierkandt, T. et al. Flame structure of a low-pressure laminar premixed and lightly sooting acetylene flame and the effect of ethanol addition. Proc. Combust. Inst. 35, 803–811 (2015).

Nemeth, G. I., Selzle, H. L. & Schlag, E. W. Magnetic zeke experiments with mass analysis. Chem. Phys. Lett. 215, 151–155 (1993).

Custodis, V. B. F., Hemberger, P., Ma, Z. & van Bokhoven, J. A. Mechanism of fast pyrolysis of lignin: studying model compounds. J. Phys. Chem. B 118, 8524–8531 (2014).

Scheer, A. M., Mukarakate, C., Robichaud, D. J., Nimlos, M. R. & Ellison, G. B. Thermal decomposition mechanisms of the methoxyphenols: formation of phenol, cyclopentadienone, vinylacetylene, and acetylene. J. Phys. Chem. A 115, 13381–13389 (2011).

Lu, K. T., Eiden, G. C. & Weisshaar, J. C. Toluene cation: nearly free rotation of the methyl group. J. Phys. Chem. 96, 9742–9748 (1992).

Urwyler, B. & Wirz, J. The tautomeric equilibrium between cyclopentadienyl-1-carboxylic acid and fulvene-6,6-diol in aqueous solution. Angew. Chem. Int. Ed. 29, 790–792 (1990).

Scheer, A. M. et al. Unimolecular thermal decomposition of phenol and d5-phenol: direct observation of cyclopentadiene formation via cyclohexadienone. J. Chem. Phys. 136, 044309 (2012).

Dorrestijn, E. & Mulder, P. The radical-induced decomposition of 2-methoxyphenol. J. Chem. Soc., Perkin Trans. 2, 777–780 (1999).

Vasiliou, A. K. et al. Biomass pyrolysis: thermal decomposition mechanisms of furfural and benzaldehyde. J. Chem. Phys. 139, 104310 (2013).

He, J., Lu, L., Zhao, C., Mei, D. & Lercher, J. A. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases. J. Catal. 311, 41–51 (2014).

Ma, Z. et al. Chemicals from lignin by catalytic fast pyrolysis, from product control to reaction mechanism. Chimia 69, 597–602 (2015).

Bährle, C., Custodis, V., Jeschke, G., van Bokhoven, J. A. & Vogel, F. The influence of zeolites on radical formation during lignin pyrolysis. ChemSusChem. 9, 2397–2403 (2016).

Frisch, M. J. et al. Gaussian 09, revision b.01 (Wallingford CT, (2009).

Altarawneh, M., Dlugogorski, B. Z., Kennedy, E. M. & Mackie, J. C. Theoretical study of unimolecular decomposition of catechol. J. Phys. Chem. A 114, 1060–1067 (2010).

Khachatryan, L., Asatryan, R., McFerrin, C., Adounkpe, J. & Dellinger, B. Radicals from the gas-phase pyrolysis of catechol. 2. Comparison of the pyrolysis of catechol and hydroquinone. J. Phys. Chem. A 114, 10110–10116 (2010).

Collett, C. H. & McGregor, J. Things go better with coke: the beneficial role of carbonaceous deposits in heterogeneous catalysis. Catal. Sci. Tech. 6, 363–378 (2016).

Thomson, S. J. & Webb, G. Catalytic hydrogenation of olefins on metals: a new interpretation. J. Chem. Soc., Chem. Commun. 526–527 (1976).

Xue, Y., Zhou, S. & Bai, X. Role of hydrogen transfer during catalytic copyrolysis of lignin and tetralin over HZSM-5 and HY zeolite catalysts. ACS Sustain. Chem. Eng. 4, 4237–4250 (2016).

Ma, Z., Ghosh, A., Asthana, N. & van Bokhoven, J. Optimization of reaction condition of catalytic fast pyrolysis of pretreated lignin over zeolite for production of phenol. ChemCatChem 9, 954–961 (2017).

Bodi, A. et al. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics. Rev. Sci. Instrum. 80, 034101 (2009).

Johnson, M., Bodi, A., Schulz, L. & Gerber, T. Vacuum ultraviolet beamline at the swiss light source for chemical dynamics studies. Nucl. Instrum. Method A 610, 597–603 (2009).

Bodi, A., Sztáray, B., Baer, T., Johnson, M. & Gerber, T. Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments. Rev. Sci. Instrum. 78, 084102 (2007).

Leppelt, R. et al. Design and characterization of a temporal analysis of products reactor. Rev. Sci. Instrum. 78, 104103 (2007).

Yu, Y. et al. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Appl. Catal. A 447–448, 115–123 (2012).

Mozhayskiy, A. & Krylov, A. I. eZspectrum. http://iopenshell.usc.edu/downloads (2014).