Understanding the intrinsic circuitry of the cat’s lateral geniculate nucleus: electrical properties of the spine-triad arrangement

The Royal Society - Tập 225 Số 1240 - Trang 365-390 - 1985
Christof Koch1
1Center for Biological Information Processing and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, E25-201, Cambridge, Massachusetts 02139, U. S. A.

Tóm tắt

Electron-microscopic studies of relay cells in the lateral geniculate nucleus of the cat have shown that the retinal input to X-cells is associated with a special synaptic circuitry, termed the spine-triad. The retinal afferent makes an asymmetrical synapse with both a dendritic appendage of the X-cell and a geniculate interneuron. The interneuron contacts in turn the same dendritic appendage with a symmetrical synaptic profile. The retinal input to geniculate Y-cells is predominantly found on dendritic shafts without any triadic arrangement. We explore the integrative properties of X- and Y-cells resulting from this striking dichotomy in synaptic architecture. The basis of our analysis is the solution of the passive cable equation in a HRP-stained and reconstructed geniculate X-cell with known somatic input resistance. Recent evidence shows that geniculate interneurons stain for glutamic acid decarboxylase, the synthesizing enzyme for the inhibitory neuro-transmitterγ-aminobutyric acid (GABA). Under the assumption that the GABAergic inhibition has a reversal potential close to the resting potential of the cell, activation of the interneuron reduces very efficiently the excitatory postsynaptic potential induced by the retinal afferentwithoutaffecting the electrical activity in the rest of the cell. Therefore, the spine—triad circuit implements the analogue version of an AND—NOT gate. Functionally, this corresponds to a presynaptic, feed-forward type of inhibition of the optic tract terminal although inhibition actually occurs at a postsynaptic site. If the inhibition has a reversal potential well below the resting potential, the inhibitory postsynaptic potential would hyperpolarize large parts of the relay cell, abolishing the local character of the synaptic veto operation. Since Y-cells lack this structure, inhibition acts globally, reducing the general electrical activity of the cell. We propose that geniculate interneurons gate the flow of visual information into the X-system as a function of the behavioural state of the animal, enhancing the centre-surround antagonism and possibly mediating reciprocal lateral inhibition and eye-movement-related suppression.

Từ khóa


Tài liệu tham khảo

Adams P. R., 1981, Voltage clamp analysis of inhibitory synaptic action in crayfish stretch receptor neurons, Fedn Fedn Socs Biol., 40, 2637

10.1016/0006-8993(82)90886-1

10.1016/0006-8993(82)90730-2

10.1007/BF00238961

10.1007/BF00238105

10.1113/jphysiol.1984.sp015085

10.1016/0006-8993(82)90119-6

Barlow H. B., 1981, Critical limiting factors in the design of the eye and visual cortex. Proc. R. 8 0 c, Bond. B, 212, 1

Barlow H. B., 1965, The mechanism of directionally selective units in rabbit's retina. J. Physiol, Bond., 178, 477

Barrett J. N., 1975, Motoneuron dendrites: role in synaptic integration. Fedn Proc. Fedn Am. Socs exp, Biol., 34, 1398

10.1016/0306-4522(81)90091-9

10.1113/jphysiol.1984.sp015514

Bloomfield S., 1984, Morphometric and electrical properties of neurons in the lateral geniculate nucleus of the cat. Neurosci, Abst., 10, 20

10.1016/0042-6989(75)90196-0

10.1152/jn.1981.45.1.1

10.1152/jn.1979.42.1.274

10.1113/jphysiol.1982.sp014434

10.1016/S0006-3495(74)85943-6

10.1113/jphysiol.1971.sp009581

10.1073/pnas.81.14.4586

10.1113/jphysiol.1979.sp012893

Diamond J. Gray E. G. & Yasargil G. M. 1970 The function of the dendritic spine: a hypothesis. In Excitatory synaptic mechanisms (ed. P. Andersen & J. Jansen) pp. 212-222. Oslo: Universitetsforlag.

10.1152/jn.1977.40.2.410

10.1007/BF00239782

10.1016/0006-8993(70)90287-8

Famiglietti E. V., 1972, The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. J. comp, Neurol., 144, 285

10.1523/JNEUROSCI.04-07-01809.1984

Fleshman J. W., 1983, Matching electrophysiological with morphological measurements in cat a-motoneurons. Neurosci, Abst., 9, 102

10.1016/0006-8993(77)90386-9

10.1152/jn.1981.46.1.80

10.1016/0006-8993(71)90597-X

10.1016/0006-8993(76)90018-4

Gilbert C. D., 1975, The projections of cells in different layers of the cat's visual cortex. J. comp, Neur., 163, 81

10.1126/science.6857271

10.1016/S0006-3495(74)85947-3

Guillery R. W., 1966, A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. comp, Neurol., 238, 21

Guillery R. W., 1969, The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Zellforsch. mikrosk, Anat., 96, 1

Guillery R. W., 1969, 6 A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. J .comp, Neurol., 96, 39

Guillery R. W., 1970, Synaptic patterns in the dorsal lateral geniculate nucleus of the monkey. Z. Zellforsch. mikrosk, Anat., 103, 90

10.1016/0006-8993(74)91024-5

Hamos J. E., 1983, The ultrastructural substrates for synaptic circuitry of an X retinogeniculate axon. Neurosci, Abst., 9, 814

Hamos J. E., 1984, Input and output organization of a local circuit neuron in the cat's lateral geniculate nucleus. Neurosci, Abst., 10, 20

Hamos J. E. van Horn S. C. Raczkowski D. Uhlrich D. J. & Sherman S. M. 1985 Synaptic circuits involving an interneuron in the cat's lateral geniculate nucleus. (Submitted.)

10.1007/BF00288559

10.1152/jn.1972.35.4.518

10.1113/jphysiol.1961.sp006635

10.1007/BF00236224

Jack J. J. Noble D. & Tsien R. W. 1975 Electric current flow in excitable cells. Oxford: Clarendon Press.

10.1113/jphysiol.1984.sp015153

10.1113/jphysiol.1984.sp015154

10.1098/rspb.1969.0018

Koch C. 1984 A theoretical analysis of the electrical properties of a X-cell in the cat's l.g.n.: does the interneuron gate the visual input to the X-system ?Artif. Intell. Lab. Memo no. 787. Cambridge: Massachusetts Institute of Technology.

10.1098/rspb.1983.0051

10.1016/0165-0270(85)90015-9

10.1098/rstb.1982.0084

10.1073/pnas.80.9.2799

LeVfiy S., 1977, Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation. J. comp, Neurol., 172, 563

10.1016/0006-8993(82)90885-X

10.1038/291554a0

10.1038/225090a0

10.1016/0042-6989(73)90201-0

10.1016/0306-4522(84)90026-5

10.1152/jn.1967.30.1.1

10.1007/BF00234497

10.1016/0006-8993(74)90190-5

10.1113/jphysiol.1975.sp011004

10.1113/jphysiol.1975.sp011071

O'Donnell P. Koch C. & Poggio T. 1985 Demonstrating the nonlinear interaction between excitation and inhibition in dendritic trees using computer-generated color graphics: a film. Neurosci. Abstr. 11. (In the press.)

10.1016/0306-4522(83)90060-X

10.1016/0006-8993(80)91136-1

10.1113/jphysiol.1979.sp012971

10.1016/S0006-3495(69)86467-2

Rail W. 1977 Core conductor theory and cable properties of neurons. In Handbook of physiology vol. 1 (ed. E. Kandel & S. Geiger) pp. 39-97. Washington D.C.: American Physiological Society.

10.1038/230585a0

Rapisardi S. C., 1984, Synaptology of the retinal afferent in the cat lateral geniculate nucleus. J. comp, Neurol., 223, 515

10.1016/0042-6989(74)90169-2

Schmielau F. 1979 Integration of visual and nonvisual information in nucleus reticularis thalami of the cat. In Developmental neurobiology of vision (ed. R. D. Freeman) pp. 205-225. New York: Plenum Press.

10.1016/S0006-3495(83)84404-X

Segev I., 1983, Theoretical analysis of neuron models with dendrites of unequal electrical lengths. Neurosci, Abst., 9, 102

Sherman S. M. & Koch C. 1985 Gating signal transmission in the lateral geniculate nucleus: biophysical mechanisms. Artif. Intell. Lab. Memo no. 825. Cambridge. Massachusetts Institute of Technology.

10.1016/0006-8993(83)90908-3

10.1016/0006-8993(73)90514-3

10.1152/physrev.1977.57.3.386

10.1016/0006-8993(73)90424-1

10.1016/0006-8993(74)90858-0

10.1007/BF00235054

10.1007/BF00234800

So Y. T., 1979, Spatial properties of X and Y cells, in the lateral geniculate nucleus of the cat and conduction velocities of their inputs, Brain Res., 36, 533

Sterling P., 1980, Neurons in the cat lateral geniculate nucleus that concentrate exogenous [3H]y-amino butyric acid (GABA). comp, Neurol., 192, 737

10.1098/rspb.1978.0075

10.1007/BF00238707

10.1007/BF00234020

10.1016/S0006-3495(84)84001-1

10.1098/rspb.1984.0042

10.1016/0006-8993(70)90163-0