Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review
Tóm tắt
Many biological and neural systems can be seen as networks of interacting periodic processes. Importantly, their functionality, i.e., whether these networks can perform their function or not, depends on the emerging collective dynamics of the network. Synchrony of oscillations is one of the most prominent examples of such collective behavior and has been associated both with function and dysfunction. Understanding how network structure and interactions, as well as the microscopic properties of individual units, shape the emerging collective dynamics is critical to find factors that lead to malfunction. However, many biological systems such as the brain consist of a large number of dynamical units. Hence, their analysis has either relied on simplified heuristic models on a coarse scale, or the analysis comes at a huge computational cost. Here we review recently introduced approaches, known as the Ott–Antonsen and Watanabe–Strogatz reductions, allowing one to simplify the analysis by bridging small and large scales. Thus, reduced model equations are obtained that exactly describe the collective dynamics for each subpopulation in the oscillator network via few collective variables only. The resulting equations are next-generation models: Rather than being heuristic, they exactly link microscopic and macroscopic descriptions and therefore accurately capture microscopic properties of the underlying system. At the same time, they are sufficiently simple to analyze without great computational effort. In the last decade, these reduction methods have become instrumental in understanding how network structure and interactions shape the collective dynamics and the emergence of synchrony. We review this progress based on concrete examples and outline possible limitations. Finally, we discuss how linking the reduced models with experimental data can guide the way towards the development of new treatment approaches, for example, for neurological disease.
Từ khóa
Tài liệu tham khảo
Winfree AT. The geometry of biological time. New York: Springer; 2001. (Interdisciplinary applied mathematics; vol. 12). https://doi.org/10.1007/978-1-4757-3484-3.
Liu C, Weaver DR, Strogatz SH, Reppert SM. Cell. 1997;91(6):855. https://doi.org/10.1016/S0092-8674(00)80473-0.
Strogatz SH, Abrams DM, McRobie A, Eckhardt B, Ott E. Nature. 2005;438(7064):43. https://doi.org/10.1038/43843a.
Strogatz SH, Kronauer RE, Czeisler CA. Am J Physiol. 1987;253(1 Pt 2):R172. https://doi.org/10.1152/ajpregu.1987.253.1.R172.
Smolen P, Byrne J. Encyclopedia of neuroscience. 2009.
Zavala E, Wedgwood KC, Voliotis M, Tabak J, Spiga F, Lightman SL, Tsaneva-Atanasova K. Trends Endocrinol. Metab. 2019;30(4):244. https://doi.org/10.1016/j.tem.2019.01.008.
Ghosh AK, Chance B, Pye E. Arch Biochem Biophys. 1971;145(1):319. https://doi.org/10.1016/0003-9861(71)90042-7.
Massie TM, Blasius B, Weithoff G, et al.. Proc Natl Acad Sci USA. 2010;107(9):4236. https://doi.org/10.1073/pnas.0908725107.
Honey CJ, Kotter R, Breakspear M, Sporns O. Proc Natl Acad Sci USA. 2007. https://doi.org/10.1073/pnas.0701519104.
Honey CJ, Thivierge JP, Sporns O. NeuroImage. 2010;52(3):766. https://doi.org/10.1016/j.neuroimage.2010.01.071.
Fornito A, Zalesky A, Breakspear M. Nat Rev Neurosci. 2015;16(3):159. https://doi.org/10.1038/nrn3901.
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Nat Rev Neurol. 2018;14(10):618. https://doi.org/10.1038/s41582-018-0055-2.
Goodfellow M, Rummel C, Abela E, Richardson M, Schindler K, Terry J. Sci Rep. 2016;6:29215. https://doi.org/10.1038/srep29215.
Strogatz SH. Sync: the emerging science of spontaneous order. London: Penguin; 2004.
Lehnertz K, Geier C, Rings T, Stahn K. EPJ Nonlinear Biomed Phys. 2017;5:2. https://doi.org/10.1051/epjnbp/2017001.
Singer W, Gray CM, Gray Charles WS. Annu Rev Neurosci. 1995;18:555. https://doi.org/10.1146/annurev.ne.18.030195.003011.
Deschle N, Daffertshofer A, Battaglia D, Martens EA. Front Appl Math Stat. 2019;5:28. https://doi.org/10.3389/fams.2019.00028.
Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Science. 1991;254(5032):726. https://doi.org/10.1126/science.1683005.
Hammond C, Bergman H, Brown P. Trends Neurosci. 2007;30(7):357. https://doi.org/10.1016/j.tins.2007.05.004.
Lehnertz K, Bialonski S, Horstmann MT, Krug D, Rothkegel A, Staniek M, Wagner T. J Neurosci Methods. 2009;183(1):42. https://doi.org/10.1016/j.jneumeth.2009.05.015.
Rummel C, Goodfellow M, Gast H, Hauf M, Amor F, Stibal A, Mariani L, Wiest R, Schindler K. Neuroinformatics. 2013;11:159. https://doi.org/10.1007/s12021-012-9161-2.
Słowiński P, Sheybani L, Michel CM, Richardson MP, Quairiaux C, Terry JR, Goodfellow M. eNeuro. 2019;6(4):ENEURO.0059-19.2019. https://doi.org/10.1523/ENEURO.0059-19.2019.
Hansel D, Mato G, Meunier C. Europhys Lett. 1993;23(5):367. https://doi.org/10.1209/0295-5075/23/5/011.
Hoppensteadt FC, Izhikevich EM. Weakly connected neural networks. New York: Springer; 1997. (Applied mathematical sciences; vol. 126). https://doi.org/10.1007/978-1-4612-1828-9.
Brown E, Moehlis J, Holmes P. Neural Comput. 2004;16(4):673. https://doi.org/10.1162/089976604322860668.
Monga B, Wilson D, Matchen T, Moehlis, J. Biol Cybern. 2018. https://doi.org/10.1007/s00422-018-0780-z.
Cabral J, Hugues E, Sporns O, Deco G. NeuroImage. 2011;57(1):130. https://doi.org/10.1016/j.neuroimage.2011.04.010.
Luke TB, Barreto E, So P. Front Comput Neurosci. 2014;8:145. https://doi.org/10.3389/fncom.2014.00145.
Britz J, Van De Ville D, Michel CM. NeuroImage. 2010;52(4):1162. https://doi.org/10.1016/j.neuroimage.2010.02.052.
Buzsáki G, Wang XJ. Annu Rev Neurosci. 2012;35(1):203. https://doi.org/10.1146/annurev-neuro-062111-150444.
Coombes S, Byrne Á. In: Corinto F, Torcini A, editors. Nonlinear dynamics in computational neuroscience. Cham: Springer; 2019. p. 1–16. https://doi.org/10.1007/978-3-319-71048-8_1.
Strogatz SH. Nonlinear dynamics and chaos. Reading: Perseus Books Publishing; 1994.
Izhikevich EM. Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press; 2007.
Porter M, Gleeson J. Dynamical systems on networks. Cham: Springer; 2016. (Frontiers in applied dynamical systems: reviews and tutorials; vol. 4). https://doi.org/10.1007/978-3-319-26641-1.
Rodrigues FA, Peron TKD, Ji P, Kurths J. Phys Rep. 2016;610:1. https://doi.org/10.1016/j.physrep.2015.10.008.
Pecora LM, Carroll TL. Phys Rev Lett. 1998;80(10):2109. https://doi.org/10.1103/PhysRevLett.80.2109.
Barahona M, Pecora LM. Phys Rev Lett. 2002;89(5):054101. https://doi.org/10.1103/PhysRevLett.89.054101.
Pereira T, Eldering J, Rasmussen M, Veneziani A. Nonlinearity. 2014;27(3):501. https://doi.org/10.1088/0951-7715/27/3/501.
Tyulkina IV, Goldobin DS, Klimenko LS, Pikovsky A. Phys Rev Lett. 2018;120:264101. https://doi.org/10.1103/PhysRevLett.120.264101.
Goldobin DS, Tyulkina IV, Klimenko LS, Pikovsky A. Chaos. 2018;28(10):1. https://doi.org/10.1063/1.5053576.
Breakspear M, Heitmann S, Daffertshofer A. Front Human Neurosci. 2010;4:190. https://doi.org/10.3389/fnhum.2010.00190.
Schmidt H, Petkov G, Richardson MP, Terry JR. PLoS Comput Biol. 2014;10(11):e1003947. https://doi.org/10.1371/journal.pcbi.1003947.
Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. New York: Springer; 2010. (Interdisciplinary applied mathematics; vol. 35). https://doi.org/10.1007/978-0-387-87708-2.
Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge: Cambridge University Press; 2014.
Monteforte M, Wolf F. Phys Rev Lett. 2010;105(26):268104. https://doi.org/10.1103/PhysRevLett.105.268104.
Ermentrout GB, Rubin J, Osan R. SIAM J Appl Math. 2002;62(4):1197. https://doi.org/10.1137/S0036139901387253.
Gutkin B. In: Encyclopedia of computational neuroscience. 2015. p. 2958–65.
Latham PE, Richmond B, Nelson P, Nirenberg S. J Neurophysiol. 2000;83(2):808. https://doi.org/10.1152/jn.2000.83.2.808.
Kopell N, Ermentrout GB. Proc Natl Acad Sci USA. 2004;101(43):15482. https://doi.org/10.1073/pnas.0406343101.
Montbrió E, Pazó D, Roxin A. Phys Rev X. 2015;5(2):021028. https://doi.org/10.1103/PhysRevX.5.021028.
Mardia KV, Jupp PE. Directional statistics. Hoboken: Wiley; 1999. (Wiley series in probability and statistics). https://doi.org/10.1002/9780470316979.
Mirollo RE, Strogatz SH. J Nonlinear Sci. 2007;17(4):309. https://doi.org/10.1007/s00332-006-0806-x.
Carrillo JA, Choi YP, Ha SY, Kang MJ, Kim Y. J Stat Phys. 2014;156(2):395. https://doi.org/10.1007/s10955-014-1005-z.
Dietert H, Fernandez B, Gérard-Varet D. Commun Pure Appl Math. 2018;71(5):953. https://doi.org/10.1002/cpa.21741.
Carrillo JA, Choi YP, Pareschi L. J Comput Phys. 2019;376:365. https://doi.org/10.1016/j.jcp.2018.09.049.
Chiba H, Medvedev GS. Discrete Contin Dyn Syst, Ser A. 2019;39:131. https://doi.org/10.3934/dcds.2019006.
Martens EA, Barreto E, Strogatz SH, Ott E, So P, Antonsen TM. Phys Rev E. 2009;79(2):026204. https://doi.org/10.1103/PhysRevE.79.026204.
Tsang KY, Mirollo RE, Strogatz SH, Wiesenfeld K. Physica D. 1991;48(1):102. https://doi.org/10.1016/0167-2789(91)90054-D.
Wiesenfeld K, Colet P, Strogatz SH. Phys Rev E. 1998;57(2):1563. https://doi.org/10.1103/PhysRevE.57.1563.
Watanabe S, Strogatz SH. Phys Rev Lett. 1993;70(16):2391. https://doi.org/10.1103/PhysRevLett.70.2391.
Chen B, Engelbrecht JR, Mirollo RE. J Phys A, Math Theor. 2017;50(35):355101. https://doi.org/10.1088/1751-8121/aa7e39.
Pikovsky A, Rosenblum M. Physica D. 2011;240(9–10):872. https://doi.org/10.1016/j.physd.2011.01.002.
Pikovsky A, Rosenblum M. Phys Rev Lett. 2008;101:264103. https://doi.org/10.1103/PhysRevLett.101.264103.
Bick C, Timme M, Paulikat D, Rathlev D, Ashwin P. Phys Rev Lett. 2011;107(24):244101. https://doi.org/10.1103/PhysRevLett.107.244101.
Ashwin P, Bick C, Burylko O. Front Appl Math Stat. 2016;2(7):7. https://doi.org/10.3389/fams.2016.00007.
Vlasov V, Rosenblum M, Pikovsky A. J Phys A, Math Theor. 2016;49(31):31LT02. https://doi.org/10.1088/1751-8113/49/31/31LT02.
Kuznetsov YA. Elements of applied bifurcation theory. 3rd ed. New York: Springer; 2004. (Applied mathematical sciences; vol. 112).
Brown E, Holmes P, Moehlis J. In: Perspectives and problems in nonlinear science: a celebratory volume in honor of Larry Sirovich. Berlin: Springer; 2003. p. 183–215.
Pietras B, Deschle N, Daffertshofer A. Phys Rev E. 2016;94(5):052211. https://doi.org/10.1103/PhysRevE.94.052211.
Tanaka T, Aoyagi T. Phys Rev Lett. 2011;106(22):224101. https://doi.org/10.1103/PhysRevLett.106.224101.
Levine JM, Bascompte J, Adler PB, Allesina S. Nature. 2017;546(7656):56. https://doi.org/10.1038/nature22898.
Ariav G, Polsky A, Schiller J. J Neurosci. 2003;23(21):7750. https://doi.org/10.1523/JNEUROSCI.23-21-07750.2003.
Memmesheimer RM. Proc Natl Acad Sci USA. 2010;107(24):11092. https://doi.org/10.1073/pnas.0909615107.
Rosenblum M, Pikovsky A. Phys Rev Lett. 2007;98(6):064101. https://doi.org/10.1103/PhysRevLett.98.064101.
Kralemann B, Pikovsky A, Rosenblum M. New J Phys. 2014;16:085013. https://doi.org/10.1088/1367-2630/16/8/085013.
Hoppensteadt FC, Izhikevich EM. Phys Rev Lett. 1999;82(14):2983. https://doi.org/10.1103/PhysRevLett.82.2983.
Skardal PS, Arenas A. Phys Rev Lett. 2019;122(24):248301. https://doi.org/10.1103/PhysRevLett.122.248301.
Acebrón J, Bonilla L, Pérez Vicente C, et al.. Rev Mod Phys. 2005;77(1):137. https://doi.org/10.1103/RevModPhys.77.137.
Lee WS, Ott E, Antonsen TM. Phys Rev Lett. 2009;103(4):044101. https://doi.org/10.1103/PhysRevLett.103.044101.
Petkoski S, Spiegler A, Proix T, Aram P, Temprado JJ, Jirsa VK. Phys Rev E. 2016;94(1):012209. https://doi.org/10.1103/PhysRevE.94.012209.
Golubitsky M, Stewart I. The symmetry perspective. Basel: Birkhäuser; 2002. (Progress in mathematics; vol. 200).
Abrams DM, Strogatz SH. Phys Rev Lett. 2004;93(17):174102. https://doi.org/10.1103/PhysRevLett.93.174102.
Kemeth FP, Haugland SW, Schmidt L, Kevrekidis IG, Krischer K. Chaos. 2016;26:094815. https://doi.org/10.1063/1.4959804.
Kemeth FP, Haugland SW, Krischer K. Phys Rev Lett. 2018;120(21):214101. https://doi.org/10.1103/PhysRevLett.120.214101.
Kuramoto Y, Battogtokh D. Nonlinear Phenom Complex Syst. 2002;4:380.
Abrams DM, Mirollo RE, Strogatz SH, Wiley DA. Phys Rev Lett. 2008;101(8):084103. https://doi.org/10.1103/PhysRevLett.101.084103.
Martens EA, Panaggio MJ, Abrams DM. New J Phys. 2016;18(2):022002. https://doi.org/10.1088/1367-2630/18/2/022002.
Palmigiano A, Geisel T, Wolf F, Battaglia D. Nat Neurosci. 2017;20(7):1014. https://doi.org/10.1038/nn.4569.
Panaggio MJ, Abrams DM, Ashwin P, Laing CR. Phys Rev E. 2016;93(1):012218. https://doi.org/10.1103/PhysRevE.93.012218.
Bick C, Sebek M, Kiss IZ. Phys Rev Lett. 2017;119(16):168301. https://doi.org/10.1103/PhysRevLett.119.168301.
Montbrió E, Kurths J, Blasius B. Phys Rev E. 2004;70(5):56125. https://doi.org/10.1103/PhysRevE.70.056125.
Maistrenko YL, Penkovsky B, Rosenblum M. Phys Rev E. 2014;89(6):060901. https://doi.org/10.1103/PhysRevE.89.060901.
Hong H, Strogatz SH. Phys Rev Lett. 2011;106(5):054102. https://doi.org/10.1103/PhysRevLett.106.054102.
Abeles M, Bergman H, Gat I, Meilijson I, Seidemann E, Tishby N, Vaadia E. Proc Natl Acad Sci USA. 1995;92(19):8616. https://doi.org/10.1073/pnas.92.19.8616.
Weinberger O, Ashwin P. Discrete Contin Dyn Syst, Ser B. 2018;23(5):2043. https://doi.org/10.3934/dcdsb.2018193.
Rabinovich MI, Varona P, Selverston A, Abarbanel HDI. Rev Mod Phys. 2006;78(4):1213. https://doi.org/10.1103/RevModPhys.78.1213.
Rabinovich MI, Afraimovich VS, Bick C, Varona P. Phys Life Rev. 2012;9(1):51. https://doi.org/10.1016/j.plrev.2011.11.002.
Ashwin P, Orosz G, Wordsworth J, Townley S. SIAM J Appl Dyn Syst. 2007;6(4):728. https://doi.org/10.1137/070683969.
Deco G, Cabral J, Woolrich MW, Stevner AB, van Hartevelt TJ, Kringelbach ML. NeuroImage. 2017;152;538. https://doi.org/10.1016/j.neuroimage.2017.03.023.
Komarov MA, Pikovsky A. Phys Rev Lett. 2013;110(13):134101. https://doi.org/10.1103/PhysRevLett.110.134101.
Lück S, Pikovsky A. Phys Lett A. 2011;375(28–29):2714. https://doi.org/10.1016/j.physleta.2011.06.016.
Koch C. Biophysics of computation: information processing in single neurons. Oxford: Oxford University Press; 2004.
Laing CR. In: Moustafa AA, editor. Computational models of brain and behavior. New York: Wiley; 2017. Chap. 37, p. 505–18.
Devalle F, Roxin A, Montbrió E. PLoS Comput Biol. 2017;13(12):e1005881. https://doi.org/10.1371/journal.pcbi.1005881.
Ceni A, Olmi S, Torcini A, Angulo-Garcia D. arXiv:1908.07954 (2019).
Pietras B, Devalle F, Roxin A, Daffertshofer A, Montbrió E. Phys Rev E. 2019;100(4):042412. https://doi.org/10.1103/PhysRevE.100.042412.
Ariaratnam JT, Strogatz SH. Phys Rev Lett. 2001;86(19):4278. https://doi.org/10.1103/PhysRevLett.86.4278.
Schultheiss NW, Prinz AA, Butera RJ. Phase response curves in neuroscience: theory, experiment, and analysis. Berlin: Springer; 2011.
Gallego R, Montbrió E, Pazó D. Phys Rev E. 2017;96(4):042208. https://doi.org/10.1103/PhysRevE.96.042208.
Dumont G, Ermentrout GB, Gutkin B. Phys Rev E. 2017;96(4):042311. https://doi.org/10.1103/PhysRevE.96.042311.
Esnaola-Acebes JM, Roxin A, Avitabile D, Montbrió E. Phys Rev E. 2017;96(5):052407. https://doi.org/10.1103/PhysRevE.96.052407.
Byrne Á, Avitabile D, Coombes S. Phys Rev E. 2019;99(1):012313. https://doi.org/10.1103/PhysRevE.99.012313.
Chandra S, Hathcock D, Crain K, Antonsen TM, Girvan M, Ott E. Chaos. 2017;27(3):033102. https://doi.org/10.1063/1.4977514.
Blasche C, Means S, Laing CR. J Comput Dyn. 2020;to appear. arXiv:2004.00206.
Schmidt H, Avitabile D, Montbrió E, Roxin A. PLoS Comput Biol. 2018;14(9):1. https://doi.org/10.1371/journal.pcbi.1006430.
Di Volo M, Torcini A. Phys Rev Lett. 2018;121(12):128301. https://doi.org/10.1103/PhysRevLett.121.128301.
Dumont G, Gutkin B. PLoS Comput Biol. 2019;15(5):e1007019. https://doi.org/10.1371/journal.pcbi.1007019.
Bi H, Segneri M, di Volo M, Torcini A. Phys Rev Res. 2020;2(1):013042. https://doi.org/10.1103/PhysRevResearch.2.013042.
Keeley S, Byrne Á, Fenton A, Rinzel J. J Neurophysiol. 2019;121(6):2181. https://doi.org/10.1152/jn.00741.2018.
Devalle F, Montbrió E, Pazó D. Phys Rev E. 2018;98(4):042214. https://doi.org/10.1103/PhysRevE.98.042214.
Akao A, Shirasaka S, Jimbo Y, Ermentrout B, Kotani K. arXiv:1903.12155 (2019).
Jonmohamadi Y, Poudel G, Innes C, Jones R. NeuroImage. 2014;101:720. https://doi.org/10.1016/j.neuroimage.2014.07.052.
Hassan M, Dufor O, Merlet I, Berrou C, Wendling F. PLoS ONE. 2014;9(8):e105041. https://doi.org/10.1371/journal.pone.0105041.
Stankovski T, Pereira T, McClintock PVE, Stefanovska A. Rev Mod Phys. 2017;89(4):045001. https://doi.org/10.1103/RevModPhys.89.045001.
Wang HE, Friston KJ, Bénar CG, Woodman MM, Chauvel P, Jirsa V, Bernard C. NeuroImage. 2018;166:167. https://doi.org/10.1016/j.neuroimage.2017.10.036.
Garcés P, Pereda E, Hernández-Tamames JA, Del-Pozo F, Maestú F, Ángel Pineda-Pardo J. Hum Brain Mapp. 2016;37(1):20. https://doi.org/10.1002/hbm.22995.
Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. NeuroImage. 2011;58(2):339. https://doi.org/10.1016/j.neuroimage.2011.03.058.
Bastos AM, Vezoli J, Fries P. Curr Opin Neurobiol. 2015;31:173. https://doi.org/10.1016/j.conb.2014.11.001.
Bassett DS, Zurn P, Gold JI. Nat Rev Neurosci. 2018;19(9):566. https://doi.org/10.1038/s41583-018-0038-8.
Senden M, Deco G, De Reus MA, Goebel R, Van Den Heuvel MP. NeuroImage. 2014;96:174. https://doi.org/10.1016/j.neuroimage.2014.03.066.
Demirtaş M, Falcon C, Tucholka A, Gispert JD, Molinuevo JL, Deco G. NeuroImage Clin. 2017;16:343. https://doi.org/10.1016/j.nicl.2017.08.006.
Misic B, Betzel RF, Reus MAD, Heuvel MPVD, Berman MG, Mcintosh AR, Sporns O. Cereb Cortex. 2016;26:3285. https://doi.org/10.1093/cercor/bhw089.
Shen K, Hutchison RM, Bezgin G, Everling S, McIntosh AR. J Neurosci. 2015;35(14):5579. https://doi.org/10.1523/JNEUROSCI.4903-14.2015.
Dauwels J, Vialatte F, Musha T, Cichocki A. NeuroImage. 2010;49(1):668. https://doi.org/10.1016/j.neuroimage.2009.06.056.
Lehnertz K, Ansmann G, Bialonski S, Dickten H, Geier C, Porz S. Physica D. 2014;267:7. https://doi.org/10.1016/j.physd.2013.06.009.
Schmidt H, Woldman W, Goodfellow M, Chowdhury FA, Koutroumanidis M, Jewell S, Richardson MP, Terry JR. Epilepsia. 2016;57(10):e200. https://doi.org/10.1111/epi.13481.
Tait L, Stothart G, Coulthard E, Brown JT, Kazanina N, Goodfellow M. Clin Neurophysiol. 2019;130(9):1581. https://doi.org/10.1016/j.clinph.2019.05.027.
Weerasinghe G, Duchet B, Cagnan H, Brown P, Bick C, Bogacz R. PLoS Comput Biol. 2019;15(8):e1006575. https://doi.org/10.1371/journal.pcbi.1006575.
Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, Green A, Fitzgerald J, Foltynie T, Limousin P, Zrinzo L, Hariz M, Friston KJ, Denison T, Brown P. Brain. 2017;140(1):132. https://doi.org/10.1093/brain/aww286.
Byrne Á, O’Dea R, Forrester M, Ross J, Coombes S. J Neurophysiol. 2020;123:726. https://doi.org/10.1152/jn.00406.2019.
Thiem TN, Kooshkbaghi M, Bertalan T, Laing CR, Kevrekidis IG. Front Comput Neurosci. 2020;14: 36. https://doi.org/10.3389/fncom.2020.00036.
van Vreeswijk C, Sompolinsky H. Science. 1996;274(5293):1724. https://doi.org/10.1126/science.274.5293.1724.
van Vreeswijk C, Sompolinsky H. Neural Comput. 1998;10(6):1321. https://doi.org/10.1162/089976698300017214.
Barreto E, Hunt B, Ott E, So P. Phys Rev E. 2008;77(3):036107. https://doi.org/10.1103/PhysRevE.77.036107.
Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. J Complex Netw. 2014;2(3):203. https://doi.org/10.1093/comnet/cnu016.
Swift JW, Strogatz SH, Wiesenfeld K. Physica D. 1992;55(3–4):239. https://doi.org/10.1016/0167-2789(92)90057-T.
Landau L, Lifshitz E. Course of theoretical physics. Volume 6: fluid mechanics. London: Pergamon Press; 1959.
Pietras B, Deschle N, Daffertshofer A. Phys Rev E. 2018;98(6):062219. https://doi.org/10.1103/PhysRevE.98.062219.