Hiểu Về Tác Động Của Thành Phần Bề Mặt Đến Sự Hòa Tan Trong Ống Nghiệm Và Tạo Khói Của Các Công Thức Bột Composite Được Phun Sấy Để Hít

Springer Science and Business Media LLC - Tập 36 - Trang 1-15 - 2018
Sharad Mangal1, Rongkun Xu1, Heejun Park1, Dmitry Zemlyanov2, Nivedita Shetty1, Yu-Wei Lin3, David Morton4, Hak-Kim Chan5, Jian Li3, Qi Tony Zhou1
1Department of Industrial and Physical Pharmacy College of Pharmacy, Purdue University, West Lafayette, USA
2Birck Nanotechnology Center, Purdue University, West Lafayette, USA
3Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
4Drug Delivery, Dynamics & Deposition, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
5Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, Australia

Tóm tắt

Hành vi hòa tan của các công thức kháng sinh trong dạng bột hít (DPI) trong đường hô hấp có thể ảnh hưởng đến hiệu quả của chúng, đặc biệt là đối với các loại kháng sinh ít tan như azithromycin. Mục tiêu chính của nghiên cứu này là hiểu các tác động của thành phần bề mặt đối với sự hòa tan của các bột azithromycin được phun sấy, cả khi hoạt động độc lập và khi kết hợp với colistin. Các công thức composite của azithromycin (một phân tử ít tan trong nước) và colistin (một phân tử tan trong nước) được sản xuất thông qua phương pháp phun sấy. Các công thức thu được đã được đánh giá về kích thước hạt, hình thái, thành phần bề mặt, tính chất trạng thái rắn, độ tan và sự hòa tan. Kết quả cho thấy rằng thành phần bề mặt có tác động quan trọng đến sự hòa tan của các công thức composite. Colistin đã cho thấy khả năng tăng cường độ tan của azithromycin. Đối với các công thức composite không có colistin trên bề mặt, azithromycin đã giải phóng với tốc độ hòa tan tương tự như azithromycin phun sấy đơn độc. Sự gia tăng nồng độ colistin trên bề mặt đã được chứng minh là làm tăng tốc độ hòa tan của azithromycin. Sự hòa tan của colistin từ các công thức composite chậm hơn đáng kể so với colistin tinh khiết được phun sấy. Bên cạnh đó, quang phổ FTIR cho thấy có sự tương tác giữa các phân tử azithromycin và colistin trong các công thức composite, điều này có thể góp phần vào việc tăng cường độ tan và sự hòa tan của azithromycin. Nghiên cứu của chúng tôi cung cấp hiểu biết cơ bản về các tác động của nồng độ bề mặt của colistin lên sự hòa tan của azithromycin trong các công thức bột composite được phun sấy đồng thời.

Từ khóa

#kháng sinh #hòa tan #bột hít #azithromycin #colistin #phun sấy #thành phần bề mặt

Tài liệu tham khảo

Mizgerd JP. Lung infection--a public health priority. PLoS Med. 2006;3(2):e76. WHO. The 10 leading causes of death in the world, 2000 and 2012. www.who.int/mediacentre/factsheets/fs310/en/. May 2014. Hill AT, Campbell EJ, Hill SL, Bayley DL, Stockley RA. Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med. 2000;109(4):288–95. Wilkinson TM, Patel IS, Wilks M, Donaldson GC, Wedzicha JA. Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(8):1090–5. Patel I, Seemungal T, Wilks M, Lloyd-Owen S, Donaldson G, Wedzicha J. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57(9):759–64. Velkov T, Abdul Rahim N, Zhou Q, Chan H-K, Li J. Inhaled anti-infective chemotherapy for respiratory tract infections: Successes, challenges and the road ahead. Adv Drug Deliv Rev. 2015;85:65–82. Traini D, Young PM. Delivery of antibiotics to the respiratory tract: an update. Expert Opin Drug Deliv. 2009;6(9):897–905. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients. Antimicrob Agents Chemother. 2011;55(7):3284–94. Yapa SWS, Li J, Porter CJH, Nation RL, Patel K, McIntosh MP. Population pharmacokinetics of colistin methanesulfonate in rats: Achieving sustained lung concentrations of colistin for targeting respiratory infections. Antimicrob Agents Chemother. 2013;57(10):5087–95. Cipolla D, Chan H-K. Inhaled antibiotics to treat lung infection. Pharm Pat Anal. 2013;2(5):647–63. Lu Q, Girardi C, Zhang M, Bouhemad B, Louchahi K, Petitjean O, et al. Nebulized and intravenous colistin in experimental pneumonia caused by Pseudomonas aeruginosa. Intensive Care Med. 2010;36(7):1147–55. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother. 2012;67(7):1607–15. Paterson DL, Harris PNA. Colistin resistance: a major breach in our last line of defence. Lancet Infect Dis. 2016;16(2):132–3. Gurung J, Khyriem A, Banik A, Lyngdoh W, Choudhury B, Bhattacharyya P. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J Crit Care Med. 2013;17(4):214–8. Kim HA, Ryu SY, Seo I, Suh SI, Suh MH, Baek WK. Biofilm formation and colistin susceptibility of Acinetobacter baumannii isolated from Korean nosocomial samples. Microb Drug Resist. 2015;21(4):452–7. Imamura Y, Higashiyama Y, Tomono K, Izumikawa K, Yanagihara K, Ohno H, et al. Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicrob Agents Chemother. 2005;49(4):1377–80. Favre-Bonté S, Köhler T, Van Delden C. Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother. 2003;52(4):598–604. Gillis RJ, Iglewski BH. Azithromycin retards Pseudomonas aeruginosa biofilm formation. J Clin Microbiol. 2004;42(12):5842–5. Gotfried MH. Macrolides for the Treatment of Chronic Sinusitis, Asthma, and COPD. Chest. 2004;125(2, Supplement):52S–61S. Molina SA, Hunt WR. Chapter 12 - Cystic Fibrosis: An Overview of the Past, Present, and the Future A2 - Sidhaye, Venkataramana K. In: Koval M, editor. Lung Epithelial Biology in the Pathogenesis of Pulmonary Disease. Boston: Academic Press; 2017. p. 219–49. Prescott WA, Johnson CE. Antiinflammatory therapies for cystic fibrosis: Past, present, and future. Pharmacotherapy. 2005;25(4):555–73. Kumaraswamy M, Lin L, Olson J, Sun CF, Nonejuie P, Corriden R, et al. Standard susceptibility testing overlooks potent azithromycin activity and cationic peptide synergy against MDR Stenotrophomonas maltophilia. J Antimicrob Chemother. 2016;71(5):1264–9. Timurkaynak F, Can F, Azap OK, Demirbilek M, Arslan H, Karaman SO. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int J Antimicrob Agents. 2006;27(3):224–8. Lin YW, Wong J, Qu L, Chan HK, Zhou QT. Powder production and particle engineering for dry powder inhaler formulations. Curr Pharm Des. 2015;21(27):3902–16. Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005;50(9):1209–27. Zhou Q, Tang P, Leung SSY, Chan JGY, Chan H-K. Emerging inhalation aerosol devices and strategies: Where are we headed? Adv Drug Deliv Rev. 2014;75:3–17. Behara SRB, Worth Longest P, Farkas DR, Hindle M. Development and Comparison of New High-Efficiency Dry Powder Inhalers for Carrier-Free Formulations. J Pharm Sci. 2014;103(2):465–77. Warnken Z, Smyth HDC, Williams RO. Route-Specific Challenges in the Delivery of Poorly Water-Soluble Drugs. In: Williams RO, Watts AB, Miller DA, editors. Formulating Poorly Water Soluble Drugs. 2nd ed; 2016. p. 1–39. Rennard SI, Basset G, Lecossier D, O’Donnell KM, Pinkston P, Martin PG, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol. 1986;60(2):532–8. Mobley C, Hochhaus G. Methods used to assess pulmonary deposition and absorption of drugs. Drug Discov Today. 2001;6(7):367–75. Highlights of prescribing information for ZITHROMAX. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/050710s043,050711s040,050784s027lbl.pdf. Accessed 29 Oct 2018. Aucamp M, Odendaal R, Liebenberg W, Hamman J. Amorphous azithromycin with improved aqueous solubility and intestinal membrane permeability. Drug Dev Ind Pharm. 2015;41(7):1100–8. Mangal S, Nie H, Xu R, Guo R, Cavallaro A, Zemlyanov D, et al. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation. Pharm Res. 2018;35(2):28. Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016;100:116–25. Wallace SJ, Li J, Nation RL, Prankerd RJ, Velkov T, Boyd BJ. Self-Assembly Behavior of Colistin and Its Prodrug Colistin Methanesulfonate: Implications for Solution Stability and Solubilization. J Phys Chem B. 2010;114(14):4836–40. Zhou QT, Loh ZH, Yu J, Sun SP, Gengenbach T, Denman JA, et al. How Much Surface Coating of Hydrophobic Azithromycin Is Sufficient to Prevent Moisture-Induced Decrease in Aerosolisation of Hygroscopic Amorphous Colistin Powder? AAPS J. 2016;18(5):1213–24. Wan F, Bohr A, Maltesen MJ, Bjerregaard S, Foged C, Rantanen J, et al. Critical Solvent Properties Affecting the Particle Formation Process and Characteristics of Celecoxib-Loaded PLGA Microparticles via Spray-Drying. Pharm Res. 2013;30(4):1065–76. Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle Size Analysis in Pharmaceutics: Principles, Methods and Applications. Pharm Res. 2007;24(2):203–27. Shetty N, Zeng L, Mangal S, Nie H, Rowles MR, Guo R, et al. Effects of Moisture-Induced Crystallization on the Aerosol Performance of Spray Dried Amorphous Ciprofloxacin Powder Formulations. Pharm Res. 2018;35(1):7. Wang W, Zhou QT, Sun S-P, Denman JA, Gengenbach TR, Barraud N, et al. Effects of Surface Composition on the Aerosolisation and Dissolution of Inhaled Antibiotic Combination Powders Consisting of Colistin and Rifampicin. AAPS J. 2016;18(2):372–84. May S, Jensen B, Wolkenhauer M, Schneider M, Lehr CM. Dissolution Techniques for In Vitro Testing of Dry Powders for Inhalation. Pharm Res. 2012;29(8):2157–66. Salama RO, Traini D, Chan H-K, Young PM. Preparation and characterisation of controlled release co-spray dried drug–polymer microparticles for inhalation 2: Evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70(1):145–52. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022. Jaiswar DR, Jha D, Amin PD. Preparation and characterizations of stable amorphous solid solution of azithromycin by hot melt extrusion. J Pharm Investig. 2016;46(7):655–68. Freudenthal O, Quiles F, Francius G, Wojszko K, Gorczyca M, Korchowiec B, et al. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies. Biochim Biophys Acta. 2016;1858(11):2592–602. Chew NYK, Tang P, Chan HK, Raper JA. How much particle surface corrugation is sufficient to improve aerosol performance of powders? Pharm Res. 2005;22(1):148–52. Lechuga-Ballesteros D, Charan C, Stults CLM, Stevenson CL, Miller DP, Vehring R, et al. Trileucine improves aerosol performance and stability of spray-dried powders for inhalation. J Pharm Sci. 2008;97(1):287–302. Zhou Q, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan H-K. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99. Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, et al. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine. 2015;2(7):690–8. Bae S, Kim M-C, Park S-J, Kim HS, Sung H, Kim M-N, et al. In vitro synergistic activity of antimicrobial agents in combination against clinical isolates of colistin-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(11):6774–9. Chan JGY, Tyne AS, Pang A, Chan H-K, Young PM, Britton WJ, et al. Rifapentine-Containing Inhaled Triple Antibiotic Formulation for Rapid Treatment of Tubercular Infection. Pharm Res. 2014;31(5):1239–53. Baldelli A, Vehring R. Analysis of cohesion forces between monodisperse microparticles with rough surfaces. Colloids Surf A Physicochem Eng Asp. 2016;506:179–89. Boraey MA, Hoe S, Sharif H, Miller DP, Lechuga-Ballesteros D, Vehring R. Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol–water cosolvent system. Powder Technol. 2013;236:171–8. Mangal S, Park H, Zeng L, Heidi HY, Lin Y-w, Velkov T, et al. Composite particle formulations of colistin and meropenem with improved in-vitro bacterial killing and aerosolization for inhalation. Int J Pharm. 2018;548(1):443–53. Iranloye TA, Parrott EL. Effects of compression force, particle size, and lubricants on dissolution rate. J Pharm Sci. 1978;67(4):535–9. Löbmann K, Laitinen R, Strachan C, Rades T, Grohganz H. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs – Part 2: Molecular interactions. Eur J Pharm Biopharm. 2013;85(3, Part B):882–8. Jensen KT, Blaabjerg LI, Lenz E, Bohr A, Grohganz H, Kleinebudde P, et al. Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. J Pharm Pharmacol. 2016;68(5):615–24. Mestres C, Alsina MA, Busquets MA, Murányi I, Reig F. Interaction of colistin with lipids in liposomes and monolayers. Int J Pharm. 1998;160(1):99–107. Joseph J, Jemmis ED. Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc. 2007;129(15):4620–32. Kauss T, Gaubert A, Boyer C, Ba BB, Manse M, Massip S, et al. Pharmaceutical development and optimization of azithromycin suppository for paediatric use. Int J Pharm. 2013;441(1–2):218–26. Kanaze FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: A comparative study. J Appl Polym Sci. 2006;102(1):460–71.