Understanding physiological responses to pre‐treatment inhibitors in ethanologenic fermentations

Biotechnology Journal - Tập 7 Số 9 - Trang 1169-1181 - 2012
Mark Taylor1,2,3, Inonge Mulako1,2, Marla Trindade2, Don A. Cowan3
1Both authors contributed equally to this work
2Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, Cape Town, South Africa
3TMO Renewables Ltd., The Surrey Research Park, Guildford, Surrey, UK

Tóm tắt

AbstractAlcohol‐based liquid fuels feature significantly in the political and social agendas of many countries, seeking energy sustainability. It is certain that ethanol will be the entry point for many sustainable processes. Conventional ethanol production using maize‐ and sugarcane‐based carbohydrates with Saccharomyces cerevisiae is well established, while lignocellulose‐based processes are receiving growing interest despite posing greater technical and scientific challenges. A significant challenge that arises from the chemical hydrolysis of lignocellulose is the generation of toxic compounds in parallel with the release of sugars. These compounds, collectively termed pre‐treatment inhibitors, impair metabolic functionality and growth. Their removal, pre‐fermentation or their abatement, via milder hydrolysis, are currently uneconomic options. It is widely acknowledged that a more cost effective strategy is to develop resistant process strains. Here we describe and classify common inhibitors and describe in detail the reported physiological responses that occur in second‐generation strains, which include engineered yeast and mesophilic and thermophilic prokaryotes. It is suggested that a thorough understanding of tolerance to common pre‐treatment inhibitors should be a major focus in ongoing strain engineering. This review is a useful resource for future metabolic engineering strategies.

Từ khóa


Tài liệu tham khảo

10.1007/s00253-010-2707-z

10.1016/j.biortech.2009.11.093

10.1111/j.1567-1364.2008.00428.x

10.1021/es100681g

Martin M. A., 2010, First generation biofuels compete., Nat. Biotechnol., 5, 596

10.3109/07388551003757816

Lynd L. R., 2008, How biotech can transform biofuels., Nat. Biotechnol., 2, 169, 10.1038/nbt0208-169

10.1111/j.1365-313X.2008.03480.x

10.1007/s00253-009-1875-1

10.1007/978-1-60761-214-8_9

10.1016/j.biortech.2009.10.043

10.1016/j.biortech.2011.02.107

Liu Z. L. Blaschek H. P. Biomass conversion inhibitors and in situ detoxification. in: Vertes A. A. Qureshi N. Blaschek H. P. Yukawa H. (Eds.) Biomass to Biofuels: Strategies for global industries John Wiley and sons Chippenham UK 2010.

10.1016/S0961-9534(01)00061-7

10.1385/ABAB:121:1-3:0451

10.1016/j.carres.2005.06.017

10.1021/jp0626770

10.1016/S0031-9422(96)00648-6

10.1007/s00425-004-1210-0

10.1007/BF02887573

10.1007/s12010-011-9284-1

10.1016/j.biortech.2008.05.027

10.1002/btpr.545

10.1007/s00253-004-1642-2

10.1186/1475-2859-9-79

10.1128/AEM.02594-08

10.1016/S0278-6915(00)00070-3

Sandoval N. R., 2010, Elucidating acetate tolerance in E. coli using a genome‐wide approach., Metab. Eng., 2, 214

Hengge‐Aronis R., 2002, Recent insights into the general stress response regulatory network in Escherichia coli., J. Mol. Microbiol. Biotechnol., 3, 341

10.1007/s00253-010-3057-6

10.1007/s00253-010-2660-x

10.1007/s10059-009-0131-y

10.1186/1475-2859-9-32

10.1016/j.biortech.2009.11.001

10.1186/1475-2859-8-64

10.1007/s00253-011-3115-8

10.1016/j.jbiotec.2010.12.002

10.1128/AEM.01777-10

10.1002/biot.201000301

10.1007/s00253-011-3167-9

10.1186/1754-6834-3-2

10.1016/j.jbiosc.2010.06.003

10.1007/s10529-010-0437-z

10.1186/1754-6834-1-3

10.1186/1471-2164-11-660

Liu Z. L., 2009, Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways., Mol. Genet. Genomics, 3, 233

10.1007/s12010-009-8811-9

10.1186/1471-2180-10-169

10.1002/yea.1370

10.1007/s00253-005-0142-3

10.1016/j.biortech.2009.02.064

10.1186/1475-2859-10-2

10.1007/s00253-010-2518-2

10.1089/omi.2010.0072

10.1046/j.1432-1033.2003.03701.x

10.1002/biot.200800158

10.1128/JB.187.21.7204-7213.2005

10.1016/S1369-5274(99)80026-5

Weber H., 2005, Genome‐wide analysis of the general stress response network in Escherichia coli: SigmaS‐dependent genes, promoters, and sigma factor selectivity., J. Bacteriol., 5, 1591, 10.1128/JB.187.5.1591-1603.2005

Patten C. L., 2004, Microarray analysis of RpoS‐mediated gene expression in Escherichia coli K‐12., Mol. Genet. Genomics, 5, 580, 10.1007/s00438-004-1089-2

10.1128/JB.186.4.989-1000.2004

Volker U., 1999, Expression of the sigmaB‐dependent general stress regulon confers multiple stress resistance in Bacillus subtilis., J. Bacteriol., 13, 3942, 10.1128/JB.181.13.3942-3948.1999

10.1128/JB.183.19.5617-5631.2001

10.1073/pnas.90.6.2330

10.1016/j.cbpa.2004.02.005

10.1007/s002530000339

10.1007/BF01570016

Ingram L. O., 1987, Genetic engineering of ethanol production in Escherichia coli., Appl. Environ. Microbiol., 10, 2420, 10.1128/aem.53.10.2420-2425.1987

Ohta K., 1991, Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II., Appl. Environ. Microbiol., 4, 893, 10.1128/aem.57.4.893-900.1991

Wood B. E., 1992, Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum., Appl. Environ. Microbiol., 7, 2103, 10.1128/aem.58.7.2103-2110.1992

10.1128/AEM.02456-06

10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2

10.1385/ABAB:98-100:1-9:327

10.1007/s10532-011-9476-y

10.1007/s00253-010-2912-9

10.1128/AEM.01187-09

10.1128/AEM.00567-09

10.1007/s10529-010-0209-9

Keweloh H., 1990, Phenol induced membrane changes in free and immobilized Escherichia coli., Appl. Microbiol. Biotechnol., 1, 66

10.1016/0378-1119(91)90531-F

Zhang D. F., 2010, Characterization of outer membrane proteins of Escherichia coli in response to phenol stress., Curr. Microbiol., 3, 777

10.1021/bp970075f

10.1385/ABAB:81:3:193

10.1074/jbc.M110809200

10.1128/JB.183.7.2178-2186.2001

10.1128/JB.183.21.6466-6477.2001

10.1128/AEM.69.3.1759-1774.2003

10.1385/ABAB:106:1-3:457

10.1016/0734-9750(90)90648-U

10.1385/ABAB:84-86:1-9:357

10.1007/BF02788797

10.1023/A:1005320306410

10.1385/ABAB:134:1:15

10.1007/s12010-009-8842-2

10.1073/pnas.0914506107

10.1186/1471-2180-10-135

10.1016/j.ymben.2009.08.005

10.1007/s00253-010-2703-3

10.1128/MMBR.69.1.124-154.2005

10.1073/pnas.0801266105

10.1128/AEM.00625-07

10.1099/mic.0.28375-0

10.1016/j.biortech.2010.02.018

10.1016/S0378-1119(00)00352-8

10.1016/j.jhazmat.2005.08.040

10.1016/S1001-0742(09)60167-4

Yablonsky F., 1983, Alteration of membrane permeability in Bacillus subtilis by clofoctol., J. Gen. Microbiol., 4, 1089

Zago A., 1995, Cloning, sequencing, and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid decarboxylase., Appl. Environ. Microbiol., 12, 4484, 10.1128/aem.61.12.4484-4486.1995

Cavin J. F., 1997, Molecular characterization of an inducible p‐coumaric acid decarboxylase from Lactobacillus plantarum: Gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization., Appl. Environ. Microbiol., 5, 1939, 10.1128/aem.63.5.1939-1944.1997

10.1263/jbb.106.128

10.1128/AEM.69.8.4951-4965.2003

10.1128/AEM.70.10.5929-5936.2004

10.1073/pnas.0807157106

10.1021/bp990087w

Dien B. S., 2003, Bacteria engineered for fuel ethanol production: Current status., Appl. Microbiol. Biotechnol., 3, 258, 10.1007/s00253-003-1444-y

Liu S., 2009, How microbes tolerate ethanol and butanol., Nat. Biotechnol., 26, 117

10.1007/978-1-60761-214-8_5

10.1002/bit.21132

10.1007/978-1-60761-214-8_6

10.1007/s12010-011-9247-6