Understanding physiological responses to pre‐treatment inhibitors in ethanologenic fermentations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Martin M. A., 2010, First generation biofuels compete., Nat. Biotechnol., 5, 596
Lynd L. R., 2008, How biotech can transform biofuels., Nat. Biotechnol., 2, 169, 10.1038/nbt0208-169
Liu Z. L. Blaschek H. P. Biomass conversion inhibitors and in situ detoxification. in: Vertes A. A. Qureshi N. Blaschek H. P. Yukawa H. (Eds.) Biomass to Biofuels: Strategies for global industries John Wiley and sons Chippenham UK 2010.
Sandoval N. R., 2010, Elucidating acetate tolerance in E. coli using a genome‐wide approach., Metab. Eng., 2, 214
Hengge‐Aronis R., 2002, Recent insights into the general stress response regulatory network in Escherichia coli., J. Mol. Microbiol. Biotechnol., 3, 341
Liu Z. L., 2009, Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways., Mol. Genet. Genomics, 3, 233
Weber H., 2005, Genome‐wide analysis of the general stress response network in Escherichia coli: SigmaS‐dependent genes, promoters, and sigma factor selectivity., J. Bacteriol., 5, 1591, 10.1128/JB.187.5.1591-1603.2005
Patten C. L., 2004, Microarray analysis of RpoS‐mediated gene expression in Escherichia coli K‐12., Mol. Genet. Genomics, 5, 580, 10.1007/s00438-004-1089-2
Volker U., 1999, Expression of the sigmaB‐dependent general stress regulon confers multiple stress resistance in Bacillus subtilis., J. Bacteriol., 13, 3942, 10.1128/JB.181.13.3942-3948.1999
Ingram L. O., 1987, Genetic engineering of ethanol production in Escherichia coli., Appl. Environ. Microbiol., 10, 2420, 10.1128/aem.53.10.2420-2425.1987
Ohta K., 1991, Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II., Appl. Environ. Microbiol., 4, 893, 10.1128/aem.57.4.893-900.1991
Wood B. E., 1992, Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum., Appl. Environ. Microbiol., 7, 2103, 10.1128/aem.58.7.2103-2110.1992
Keweloh H., 1990, Phenol induced membrane changes in free and immobilized Escherichia coli., Appl. Microbiol. Biotechnol., 1, 66
Zhang D. F., 2010, Characterization of outer membrane proteins of Escherichia coli in response to phenol stress., Curr. Microbiol., 3, 777
Yablonsky F., 1983, Alteration of membrane permeability in Bacillus subtilis by clofoctol., J. Gen. Microbiol., 4, 1089
Zago A., 1995, Cloning, sequencing, and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid decarboxylase., Appl. Environ. Microbiol., 12, 4484, 10.1128/aem.61.12.4484-4486.1995
Cavin J. F., 1997, Molecular characterization of an inducible p‐coumaric acid decarboxylase from Lactobacillus plantarum: Gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization., Appl. Environ. Microbiol., 5, 1939, 10.1128/aem.63.5.1939-1944.1997
Dien B. S., 2003, Bacteria engineered for fuel ethanol production: Current status., Appl. Microbiol. Biotechnol., 3, 258, 10.1007/s00253-003-1444-y
Liu S., 2009, How microbes tolerate ethanol and butanol., Nat. Biotechnol., 26, 117