Nghiên cứu hoạt tính và độ chọn lọc của chất xúc tác cacbon pha tạp kim loại-nitơ cho quá trình khử điện hóa CO2

Nature Communications - Tập 8 Số 1
Wen Ju1, Alexander Bagger2, Guang‐Ping Hao3, Ana Sofía Varela1, Ilya Sinev4, Volodymyr Bon3, Beatriz Roldán Cuenya4, Stefan Kaskel3, Jan Rossmeisl2, Peter Strasser1
1Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin 10623, Germany
2Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
3Department of Inorganic Chemistry, Technical University Dresden, Dresden, 01062, Germany
4Department of Physics, Ruhr University Bochum, Bochum, 44801, Germany

Tóm tắt

Tóm tắtViệc khử điện hóa trực tiếp CO2 thành nhiên liệu và hóa chất bằng nguồn điện tái tạo đã thu hút sự chú ý đáng kể, một phần do những thách thức cơ bản liên quan đến khả năng phản ứng và độ chọn lọc, và một phần do tầm quan trọng của nó đối với các điện cực khuếch tán khí tiêu thụ CO2 trong công nghiệp. Trong nghiên cứu này, chúng tôi giới thiệu những tiến bộ trong việc hiểu biết về các xu hướng trong điện cực xúc tác CO2 thành CO của cacbon xốp pha tạp kim loại-nitơ có chứa nhóm chức M-N x (M = Mn, Fe, Co, Ni, Cu). Chúng tôi nghiên cứu hoạt tính xúc tác nội tại của chúng, tần số chuyển đổi CO, hiệu suất Faraday của CO và chứng minh rằng các chất xúc tác Fe–N–C và đặc biệt là Ni–N–C có thể so sánh với các chất xúc tác dựa trên Au và Ag. Chúng tôi mô hình hóa nhóm chức M-N x sử dụng lý thuyết hàm mật độ và liên hệ các năng lượng liên kết lý thuyết với thực nghiệm để tạo ra các chỉ số mô tả reactivity-selectivity. Điều này cung cấp hiểu biết về cơ chế ở mức nguyên tử của độ chọn lọc CO và hydrocarbon phụ thuộc vào điện thế từ các nhóm chức M-N x và đưa ra hướng dẫn dự báo cho việc thiết kế hợp lý các chất xúc tác khử CO2 có chọn lọc dựa trên cacbon.

Từ khóa

#khử điện hóa CO2 #chọn lọc điện hóa #cacbon pha tạp kim loại-nitơ #xúc tác M-N x #lý thuyết hàm mật độ

Tài liệu tham khảo

Huei-Ru, M. J., Sichao, Ma. & Paul, J. A. K. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).

Jacob, S., Jia, H., Muckerman, J. T. & Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+binding to the metal centre of CO2 reductioncatalysts. Chem. Soc. Rev. 41, 2036–2051 (2012).

Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 85, 2309–2326 (1989).

Akira, M. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

Varela, A. S., Kroschel, M., Reier, T., Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2015).

Varela, A. S., Ju, W., Reier, T. & Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016).

Kuhl, K., Cave, E., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O Films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun 7, 12123 (2016).

Schouten, K. J. P., Q., Z., Gallent, E. P. & Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 125, 7423–7426 (2013).

Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 199, 39–47 (2003).

Roberts, F. S., Kuhl, K. P. & Nilsson, A. A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 127, 5268–5271 (2015).

Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 6, 1075–1080 (2016).

Mistry, H., Varela, A. S., Kühl, S., Strasser, P. & Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016).

Zhang, S. et al. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proc. Natl Acad. Sci. 112, 15809–15814 (2015).

Rasul, S. et al. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. Int. Ed. 127, 2174–2178 (2015).

Sarfraz, S., Garcia-Esparza, A. T., Jedidi, A., Cavallo, L. & Takanabe, K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 6, 2842–2851 (2016).

Lu, Q., Rosen, J. & Jiao, F. Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem 7, 1–11 (2015).

Mistry, H. et. al. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts. Angew. Chem. Int. Ed. 56, 11394–11398 (2017).

Hori, Y. in Modern Aspects of Electrochemistry Vol. 42 (ed. Vayenas, C.) Ch. 3, 89–189 (Springer, 2008).

Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc 134, 19969–19972 (2012).

Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc 135, 16833–16836 (2013).

Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc 136, 16132–16135 (2014).

Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

Jovanov, Z. P. et al. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: a theoretical and experimental study of Au–Cd alloys. J. Catal. 343, 215–231 (2016).

Hammouche, M., Lexa, D. & Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. J. Electroanal. Chem. Interfacial Electrochem. 249, 347–351 (1988).

Bhugun, I., Lexa, D. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide by iron (0) porphyrins: synergystic effect of weak Brönsted acids. J. Am. Chem. Soc. 118, 1769–1776 (1996).

Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

Kornienko, N. et al. Metal−organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

Varela, A. S. et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew. Chem. Int. Ed. 54, 10758–10762 (2015).

J. Shen, M. J. Kolb, A. J. Göttle, M. T. M. Koper DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J. Phys. Chem. C 120, 15714–15721 (2016).

Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2010).

Sahraie, N. R., Paraknowitsch, J. P., Göbel, C., Thomas, A. & Strasser, P. Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems. J. Am. Chem. Soc. 136, 14486–14497 (2014).

Sahraie, N. R. et al. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 6, 8618 (2015).

Masa, J., Xia, W., Muhler, M. & Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 54, 2–21 (2015).

Kramm, U. I. et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 14, 11673–11688 (2012).

Kumar, B. et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013).

Zhang, S. et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014).

Sharma, P. P. et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew. Chem. Int. Ed. 54, 13701–13705 (2015).

Jingjie, Wu et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Letter 16, 466–470 (2016).

Xu, J. et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. Chemsuschem 9, 1085–1089 (2016).

Jingjie, Wu et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

Tripkovic, V. et al. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187–9195 (2013).

Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 288, 74–78 (2017).

Hao, G.-P. et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc. 133, 11378–11388 (2011).

Kabir, S., Artyushkova, K., Kiefer, B. & Atanassov, P. Computational and experimental evidence for a new TM–N 3/C moiety family in non-PGM electrocatalysts. Phys. Chem. Chem. Phys. 17, 17785–17789 (2015).

Artyushkova, K. et al. Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem. Commun. 49, 2539–2541 (2013).

C. D. Wagner et al. NIST Standard Reference Database 20. (2003).

Li, Y., Su, H., Chan, S. H. & Sun, Q. CO2 electroreduction performance of transition metal dimers supported on graphene: a theoretical study. ACS Catal. 5, 6658–6664 (2015).

Back, S., Lim, J., Kim, N.-Y., Kim, Y.-H. & Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017).

Shen, H., Li, Y. & Sun, Q. CO2 electroreduction performance of phthalocyanine sheet with mn dimer: a theoretical study. J. Phys. Chem. C 121, 3963–3969 (2017).

M. Busch et al. Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 2211–2855 (2016).

Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

Hammer, B. H., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035019 (2005).

Enkovaara, J. R. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter 22, 253202 (2010).

Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899–1905 (2014).

Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. . How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).